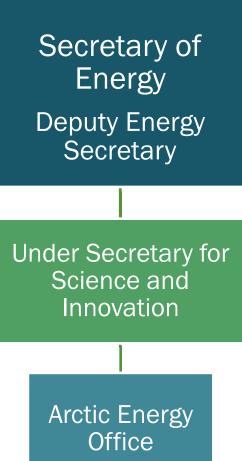


Hydrogen in the Arctic

March 21, 2023

Dr. Erin Whitney Director, Arctic Energy Office U.S. Department of Energy Anchorage, Alaska


Arctic Energy Office: A Critical Part of the DOE Mission

Department of Energy Mission:

Ensure America's security and prosperity by addressing energy, environmental and nuclear challenges through transformative science and technology solutions.

Department of Energy Goals:

- Combat the climate crisis
- Promote energy justice
- Facilitate energy transition
- Create Clean Energy union jobs

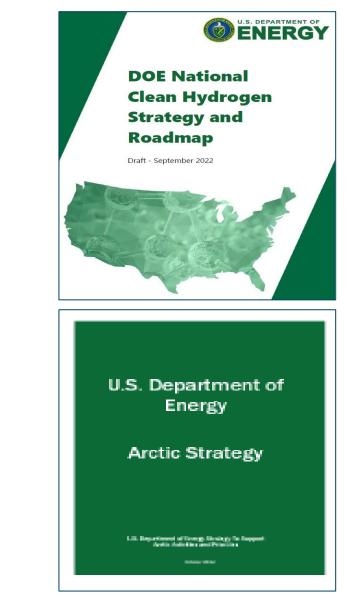
AEO Vision:

To bring the Arctic to the Department of Energy (DOE), and DOE to the Arctic. We collaborate in innovative ways to meet the **energy**, **science** and **security** needs of the US and its Arctic allies.

- Headquarters offices
- National laboratories

Science

- Interagency
- Communities
- Academia
- Industry


Energy

AEO's Role in Advancing Green Hydrogen

What are the economic, policy and technology drivers (and constraints) for its implementation in the Alaska context?

To answer that question, AEO is:

- Facilitating the Alaska State Hydrogen Energy Working Group and roadmapping process;
- Implementing the DOE Arctic Strategy;
- Working with stakeholders and other DOE offices to determine regional or scale considerations;
- Providing information about DOE Hydrogen programs & tools.

Hydrogen vs. Other Molecular Structures

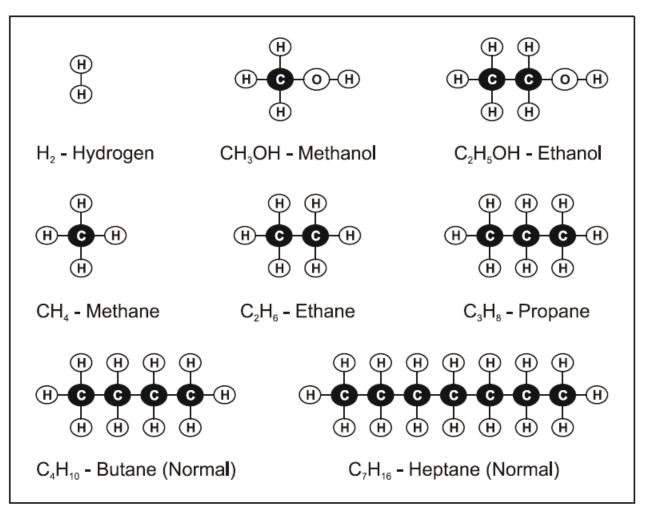
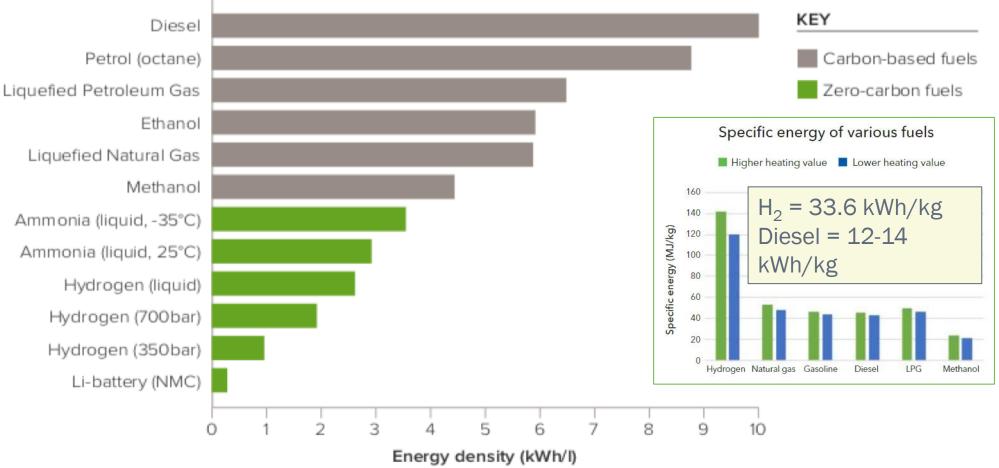



Figure 1-2 Chemical Structure of Common Fuels

https://www1.eere.energy.gov/hydrogenandfuelcells/tech_validation/pdfs/fcm01r0.pdf

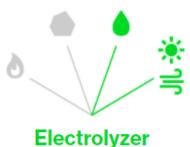
Density is Low Relative to Other Fuels, But Specific Energy is High

The volumetric energy density of a range of fuel options.

https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf

https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf https://www.dnvgl.com/publications/hydrogen-in-the-electricity-value-chain-141099

Hydrogen Colors (not used so much anymore)


 Raw materials:
 Water
 Coal
 Natural gas
 Solar/wind

 Gray hydrogen uses fossil fuels and produces carbon dioxide as a byproduct
 Blue hydrogen captures and stores most of the carbon dioxide output
 Gray byp

Gasifier/reformer

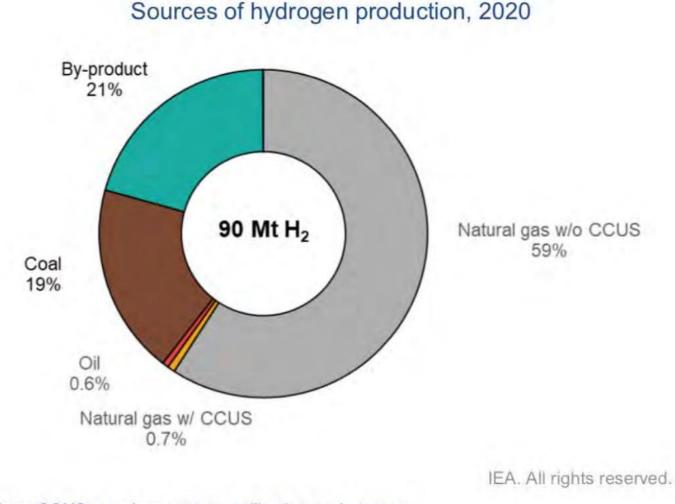
Н

Green hydrogen's byproduct is oxygen

https://www.bloomberg.com/graphics/2020-opinion-hydrogen-green-energy-revolution-challenges-risks-advantages/?sref=xfyiavTX

 CO_2

Carbon capture,


storage

U.S. DEPARTMENT OF ENERGY

Gasifier/reformer

CO

Mostly Gray and Brown Hydrogen Production Today

Note: CCUS = carbon capture, utilisation and storage.

https://iea.blob.core.windows.net/assets/3a2ed84c-9ea0-458c-9421d166a9510bc0/GlobalHydrogenReview2021.pdf

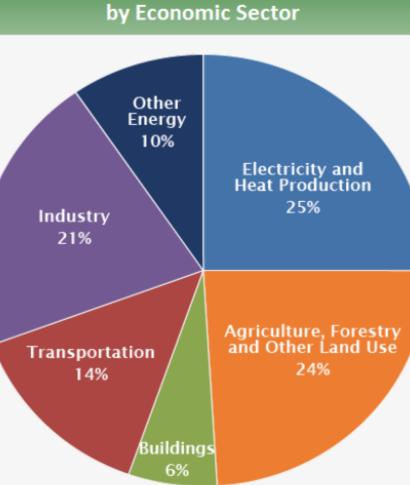
The Big Picture

On February 28th, 2022, the Intergovernmental Panel on Climate Change (IPCC) released its latest report under the Sixth Assessment cycle.

One of the key takeaways:

It is critical that we try to stay **below 1.5 degrees warming**.

If global warming exceeds 1.5°C in the coming decades or later, then many human and natural systems will face additional severe risks compared to remaining below 1.5°C.



The Drivers

BALLARD PUT DALEARD RATE OF DOCUMENT

Global Greenhouse Gas Emissions by Economic Sector

https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data

Existing and Emerging Demands for Hydrogen

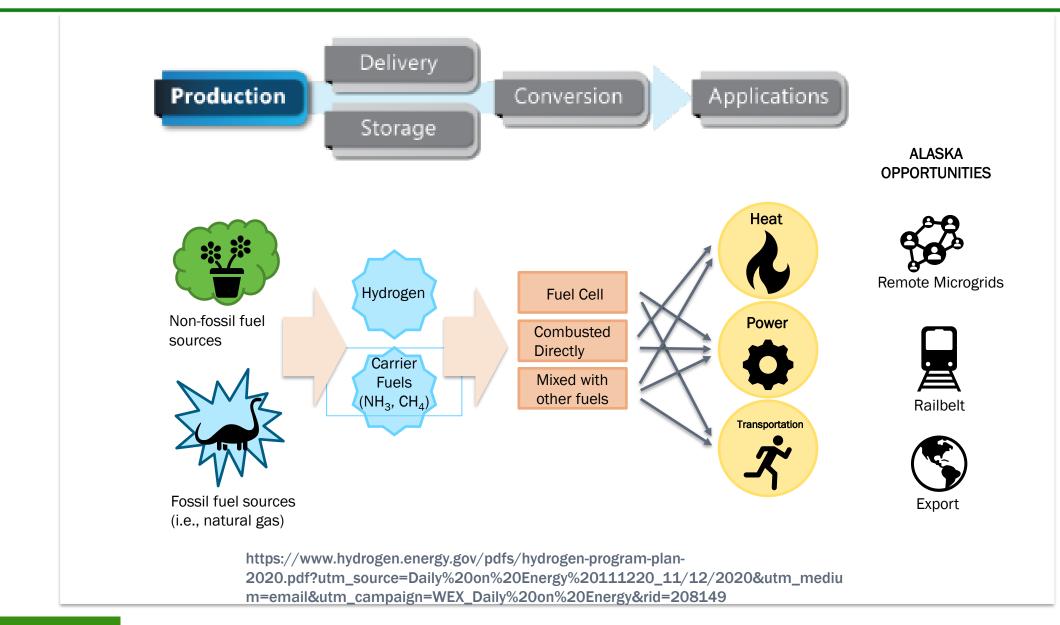
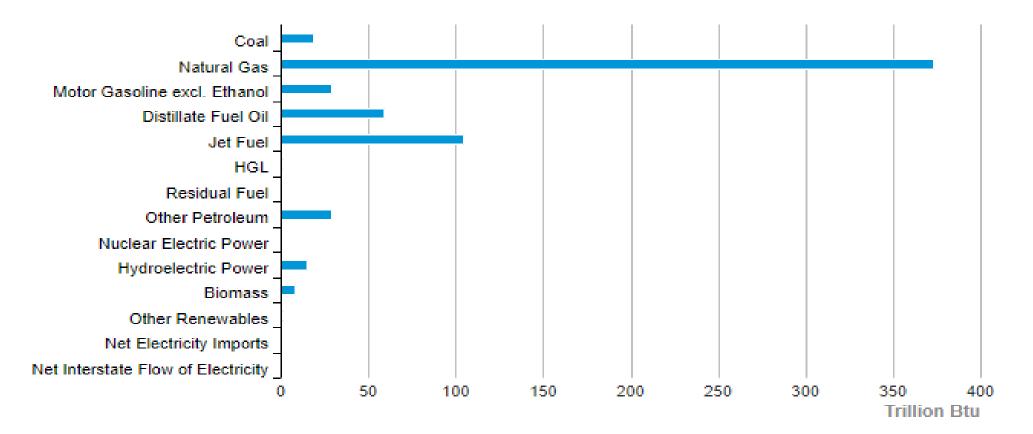

	Transportation Applications	Chemicals and Industrial Applications	Stationary and Power Generation Applications	Integrated/Hybrid Energy Systems
Existing Growing Demands	 Material-Handling Equipment Buses Light-Duty Vehicles 	Oil RefiningAmmoniaMethanol	 Distrubuted Generation: Primary and Backup Power 	 Renewable Grid Integration (with storage and other ancillary services)
Emerging Future Demands	 Medium-and Heavy-Duty Vehicles Rail Maritime Aviation Contruction Equipment 	 Steel and Cement Manufacturing Industrial Heat Bio/Synthetic Fuels 	 Reversible Fuel Cells Hydrogen Combustion Long-Duration Energy Storage 	 Nuclear/Hydrogen Hybrids Gas/Coal/Hydrogen Hybrids with CCUS Hydrogen Blending

Figure 1. Existing and emerging demands for hydrogen

https://www.hydrogen.energy.gov/pdfs/hydrogen-program-


plan2020.pdf?utm_source=Daily%20on%20Energy%20111220_11/12/2020&utm_medium=email&utm_campaign=WEX_Daily%20on%20Energy&rid=208149

Hydrogen Possibilities in Alaska

Points of Reference

Alaska Energy Consumption Estimates, 2020

https://www.eia.gov/state/print.php?sid=AK

Points of Reference

- Alaska's Railbelt has an electrical load of ~600 MW (~5 million MWh annually).
 - More than 300 million kg H_2 required to meet 100% of that load, if powered solely by hydrogen fuel cells.
- REPowerEU set a target of 10 million tonnes (= 10 billion kg) of domestic renewable hydrogen production and 10 million tonnes of renewable hydrogen imports by 2030.

[https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN&qid=1653033742483]

 China is the largest producer of hydrogen today (33 Mt – million tons = 33 billion kg), mostly from fossil fuels. Demand projected to reach 35 Mt in 2030 (~5% of Chinese energy supply) and 60 Mt in 2050.

[https://www.csis.org/analysis/china-unveils-its-first-long-term-hydrogen-plan]

DOE Hydrogen Programs & Tools

H₂ Matchmaker

A tool to assist hydrogen suppliers, users to identify collaborators, opportunities to expand regional hydrogen hubs.

Hydrogen Shot

The first Energy Earthshot, launched 6/7/2021 aims to reduce clean hydrogen costs by 80% to **\$1** per **1 kilogram** in **1 decade** ("**1 1 1**"). \$47M in funding.

H₂ Twin Cities (part of the COP26, Climate Energy Ministerial)

To accelerate hydrogen deployments by pairing communities worldwide to collaborate at the city level.

H₂@Scale

To advance affordable hydrogen production, transport, storage, and use for revenue opportunities in many sectors.

H_2 Hubs

DOE received 79 concept papers, using \$150B of their capital + \$7B of DOE funding. DOE encouraged or discouraged full applications from applicants.

Website: https://www.energy.gov/arctic/

Email: arcticenergy@hq.doe.gov Erin.Whitney@hq.doe.gov

Twitter: @ArcticEnergyDOE

LinkedIn: https://www.linkedin.com/company/doearctic-energy-office/

