Economic Potential of Alaska's Mineral Industry

Bob Loeffler & Brett Watson

April 17, 2023

UAA Institute of Social and Economic Research UNIVERSITY of ALASKA ANCHORAGE

Disclosure

- Mr. Loeffler and Dr. Watson would like to thank Power The Future for funding a portion of work presented today. However, Power The Future had no editorial control over associated methodology, results, or conclusions.
- The data assumption and conclusions are the responsibility of the authors and do not represent opinions of UAA, ISER, or the funder.
- Mr. Loeffler and Dr. Watson are not advocating for or against any particular mine, and their paper takes no position about whether any project can or should be developed.

Key Points

- The mining industry & Alaska's economy
- What might change in the future?
- Policy opportunities and challenges

The Role of Exports

- The money circulating in our economy comes from what we sell to others.
- What we buy from outside is money that leaks out
- Alaska has two major "export industries":
 - Oil & federal spending
- Other major exports:
 - seafood, minerals, tourism, air cargo

The Role of Exports

- 1/3 Federal Government Spending
- < 1/3 Oil and Gas
- > 1/3 Everything Else:
 - $\circ \text{Fishing}$
 - \circ Mining
 - \circ Tourism
 - \circ Air Cargo
 - \circ Permanent Fund

Minerals as an export

Minerals as an export - 10% of All Base Industries

Wages & Employment

- Average mining wages were \$130,000 in 2021,
 - \circ $\,$ double the average statewide wage
- Total wages and salaries \$625m in 2021
 - $\circ~$ \$985m including indirect & induced
- Statewide: 5,400 direct jobs in 2021
 - 10,800 including indirect and induced jobs

Impact on Government Revenue

Comparison of Revenue and Expenditures Fiscal Years 2016-2019, Millions of Dollars

Impact on State Government Revenue

State Revenue Comparison: FY 2016-2019

Oil vs Commercial Fishing, Mining, and Tourism

Conclusions: Mining & the Alaska Economy

- Mining statewide impact is important but relatively small:
 - Mining does not compare to oil, or federal government spending
 - Mining along with fishing, tourism, air cargo, and the permanent fund (POMV) – make up 1/3 of our economy
- Mining's impact on Alaska's state revenues is small
 - \circ No revenue source compares to Oil or POMV
 - Mining revenues are 6-10 times what the state spends to regulate or promote the industry
- Mining has a large impact on local economies

Conclusions: Mining & Local Economies

- Large employer, in communities where large mines exist
- Largest taxpayer in those communities
 - Only taxpayer in Northwest Arctic Borough
 - $\,\circ\,$ Largest two taxpayers in Juneau
 - \odot 2nd largest taxpayer in Fairbanks
- Large, high-paying employers in the community
 - Average wage \$130,000 (large mines), ~ double statewide average
 - \circ Red Dog responsible for 30% of private wages in the Borough
 - Mining employees live in ~ 90 communities statewide
- \odot 7i funding for Alaska's Native Corporations

Funding for Alaska Native Corporations

- Mines on ANCSA land provide revenue to Alaska Native Corps
- ANCSA 7(i), redistributes 70% of revenue among all Regional and Village Corps
- Most Village Corps dependent on it.
- Red Dog Mine
 - \circ generated \$2.4B for NANA
 - o 69% of 7(i) from 2014-2020
 - o May end in 2031
- Donlin is only near-term project that could provide significant 7(i) revenue

Alaska's main types of operations

- Large mines (metal & fuel)
 - 5 metal mines
 - 1 coal mine
 - Bulk of employment 2,088 (86%)
 - Most of presentation will focus on large mines
- Placer gold mining
 - 5% of state gold production
 - 150 reported operations in 2020, estimated 141 FTE
- Aggregate material quarries: Sand, gravel, stone
 - mostly supplies in-state construction
 - ~150 such operations
 - 200 jobs

(All data from Alaska DNR Mineral Industry 2020 Report)

Alaska's Six Large, Producing Mines

Name	Product	Jobs	Total Gross Value (\$m/y)	Red Dog
Rock/Coal				ALAYKA
Pogo	Au	450	180	* Fort Knox
Kensington	Au	383	180	Piteset * Pogo * Usibelli
Fort Knox	Au	655	280	Ser for
Greens Creek	Zn, Ag, Au, Pb	426	310	Kansingt
Red Dog	Zn, Ag, Pb	700	1,600	Green Creek
Usibelli	Coal	100	20	

Exploration jobs and advanced projects

Source: www.mcdowellgroup.net/wp-content/uploads/2021/02/ama-summary-brochure-web-version-2.15.2021.pdf

Alaska's Production Today

- Alaska's primary products (by value) are zinc and gold
- Coal & aggregates within state

Percent of Gross Value Production, 2019

What are Alaska's minerals used for?

Zinc: galvanized steel

Gold: investment & jewelry

Silver: Investment, electronics, jewelry

Lead: Car batteries

What could the future bring?

- Mines
- Employment,
- Critical Minerals

- (1) Identify a geologic anomaly
- (2) Exploration
- (3) Advanced Exploration
- (4) Economic evaluation
- (5) Permitting
- (6) Construction & Operation

- (1) identify a geologic anomaly
 - With powerful testing, entire periodic table likely detectable in a sample from the parking lot.
 - Less common: geologic processes concentrate enough material into a single location and a form which is technologically and economic feasible to exploit
 - Cast wide net looking for something "weird"
 - Radiation, magnetic, visual observation (USGS/DGGS)

- (2) Initial Exploration
 - As cheaply as possible: How big? What quality?
 - Only if results are positive, companies raise more money to expand drilling and the cycle repeat
 - Mining is a lottery business
- (3) Advanced Exploration
 - Eventually information warrants larger investments
 - Goal: geologic model allows companies to say:
 - "we're pretty sure X amount is below the surface, and we might have more"

- (4) Economic evaluation
 - Economic and engineering evaluation
 - The ultimate result is a net present value (NPV) for the property
 - Compare profitability with other opportunities investors have
- Favorable Preliminary Economic Assessment (PEA) -> Pre-feasibility study -> feasibility study

- (5) Permitting
 - Mines must secure several permits in order to operate
 - Mine and associated access & energy infrastructure
 - Who has the property rights?
 - Time is money
 - Time depends on company motivation, project complexity, impact, and stakeholder sentiment

- (6) Operations
 - Once constructed, mines a typically mine will aim to operate for 20 years
 - Operating might extend if additional resources are found on adjacent properties

Method

Lots of *potential* in AK, but what might become a mine in 20 years?

https://pubs.usgs.gov/fs/2017/3012/fs20173012.pdf

Method

Method

Possible Futures

- Look forward 20 years
- Consider scenarios (not forecasts) of possible futures
- From the perspective of the mining industry, 3 scenarios:
 - Favorable: What if market, policy, and geologic conditions are favorable?
 - Status Quo: What if conditions mostly stay the same?
 - Unfavorable: What if conditions degrade?

Probabilities by pyramid tier & scenario

From literature:

Original Data Source	BCMC	Cominco	RTZ	SOQUEM	Potter	Sykes/Trench
Time Frame of Study		40 yrs.		10 yrs.	20 yrs.	
Operation	1	18*	1	3	6	66
Economic Evaluation	5		1		8	92
Significant/Moderate Exploration	60	78	10	192	67	664
Recon/Initial Exploration	1649	1000	3000		159	2870

This study: expert judgement, but:

probabilities decrease moving down the pyramid

large uncertainty, consider these 'order of magnitude' estimates

Favorable > status quo > unfavorable

We assigned probabilities for hard rock, coal, and placer/suction dredge projects separately

3 Scenarios for the Development Pyramid

- Unfavorable
- Status quo
- Favorable
- Factors:
 - Outside of anyone's control: Geology/metalurgy
 - Markets: financing, metal prices/demand
 - Public opinion
 - State and Federal Policy: regulations, environmental, tax, and land use policy; infrastructure

3 Scenarios for the Development Pyramid

- 2020 Fraser Institute identifies main challenges for AK mining investment
- AK ranked 13th out of 77 jurisdictions in the Policy Perception Index lower than ID, WY, NV, UT, AZ, NM
- Of 15 factors, >25% of survey respondents cite five as mild or strong deterrent
 - 29%: Uncertainty Concerning the Administration, Interpretation and Enforcement of Existing Regulations
 - 35%: Uncertainty Concerning Environmental Regulations
 - 40%: Regulatory Duplication and Inconsistencies
 - 45%: Uncertainty Concerning Protected Areas
 - 59%: Quality of Infrastructure

Results

Mining Industry Employment in 20 years, by Scenario

	Today	Unfavorable		Status Quo		Favorable	
		Emp.	(Range)	Emp.	(Range)	Emp.	(Range)
Hard Rock & Coal	2,776	1,833	(1,141- 2,630)	3,319	(2,372- 4,267)	5,823	(5017- 6,623)
Exploration	941	733	(456- 1,052)	1,328	(949- 1,7707)	2,329	(2,007- 2,649)
Placer Mines	159	80	(60-100)	160	(120- 200)	320	(240- 500)
Total	3,876	2,646	(1,657- 3,782)	4,807	(3,440- 6,174)	8,472	(7,263- 9,772)

Critical Mineral Supply

- Critical minerals are defined as being critical for some application but with problematic supply
 - Important & hard to get
- Important: Energy transition:
 - Strong growth in mineral demand for materials
 - Some have historically been only used in small quantities
- Hard to get: supply chain issues
 - competition: Russia, China,
 - geopolitical instability: Africa
 - by-product supply issues

USGS: Economic Importance and Disruption Potential

Copper: electronics/wiring

Germanium: electronics, solar cells, optics

Molybdenum: steel alloy

Rare Earths: permanent magnets (EV motors)

Graphite: EV Batteries

Cobalt: EV Batteries

Results: Energy & Critical Minerals

		Today	_	'Favorable' Scenario				
	Production		% of 2019 US	Production		% 2019 US	% 2019 World	
Cu				114	ktons	9%	1%	
Pb	121	ktons	44%	215	ktons	79 %	5%	
Zn	603	ktons	80%	710	ktons	94 %	6%	
Au	17	tons	9%	80	tons	40%	2%	
Ag	501	tons	51%	1,008	tons	103%	4%	
Мо				138	tons	0%	0%	
Co				518	tons	104%	0%	
Barite				237	ktons	57%	3 %	
TREO				2,227	tons	8%	1%	
Graphite				249	ktons	100%	23 %	

Results: Alaska Mining Industry in 20 years

- Size could double or decrease by 1/3
- In the favorable scenario:
 - Export base: grow to \$5.6B or almost
 1/3 of Alaska's 2019 exports
 - Export multiple new minerals
 - Alaska's primary products remain zinc and gold

Percent of Gross Value Production in 20 years Favorable Scenario

Take-aways

- Impacts
 - Potential to double industry size (or decrease by 1/3) in next two decades
 - Mining won't replace oil on its own
- Supply domestic sources of critical & clean energy materials
- Need for infrastructure (physical and state-capacity)
 - Referees: clear, high standards; consistent, timely
 - o roads

Potential policy levers: Infrastructure

- Infrastructure
 - \circ Ambler Road?
 - \circ West Susitna Access?

Potential policy levers: Permitting

- In Alaska it takes ~20 years from discovery to production
- Other developed jurisdictions, about half as long

Alaska's record was Pogo: 15 years

 That was before the advent of exceptionally long EIS, and guaranteed litigation

Average EIS Process Completion Time (NOI to ROD) All EISs Completed 2010-2018

The number of Final EISs published each year, for which a ROD has been issued, is shown at the top of each bar.

"Marathon" NEPA Reviews

Potential policy levers: *Permitting*

 Maintaining an efficient permitting regime that protects the environment (not relaxing current standards)

 $\odot \mbox{State}$ budgets for resource agencies

• Fixing federal EIS delays (???)

Potential policy levers

- Infrastructure (access and energy)
- Maintaining an efficient permitting regime that protects the environment (not relaxing current standards)
- Workforce training

Thank you

Bob Loeffler

Research Professor of Public Policy Work Phone: 907-250-4621 Work Email: rloeffle@alaska.edu

Brett Watson Research Assistant Professor of Economics Work Phone: 907-786-5495

Work Email: bwjordan2@alaska.edu

Report available at: https://iseralaska.org/publications/?id=1856