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1. INTRODUCTION 

Invasive species pose a threat to the health of aquatic ecosystems worldwide, and affect 

ecosystem services important to economic sectors such as agriculture, forestry, and fisheries. 

While most bioeconomic research focuses on current invasions, there has been little research 

examining the risk of invasion to intact ecosystems that have not yet been affected. The absence 

of information on potential future damages has resulted in inadequate management response as 

other threats appear more pressing (Perrings et al. 2002). Reasons for hampered policy progress 

are related to the challenges of valuing the economic benefits and costs associated with 

mitigating the risk of invasive species, as well as the fact that people remain unaware of the issue 

when not directly or immediately affected by environmental harm (Doelle 2003). In this context, 

aquatic invasive species are especially worrisome because their presence below the surface of a 

waterbody can limit early detection. Compared to terrestrial invasive plants, aquatic invasive 

species are more likely to be established before being detected. The lag in detection lowers the 

chance of successful eradication and, ultimately, the minimization of long-term costs to society 

(Perrings et al. 2002). To effectively address the problem, interdisciplinary solutions are needed 

to quantify and reduce the risk of long-term ecological and economic damages (Shogren 2000). 

Despite the continued development of economic methods to value nonmarket and public 

goods, established methods often rely on the collection of new data. Particular challenges arise 

with complex valuation exercises designed to model the changes to ecosystem services as a 

function of human-ecological feedbacks (Finnoff et al. 2005). For example, damage assessments 

in fisheries often take a production function approach, explicitly modeling relationships among 

fish populations, human harvesting, and invasion dynamics (D. Knowler 2005; Frésard and 

Boncoeur 2006). Deciding which complexities to address and which to set aside is a common 

conundrum for researchers. Economic valuation is most straightforward when an invader has a 

direct effect on a harvestable resource because the link between ecology and economics can be 

established through reliable market data (Barbier, Acreman, and Knowler 1997). Notably, within 

a rapid response model in which timely action results in long-term cost savings, such a simplified 

valuation approach can provide critical information to managers.  

In the absence of biophysical research establishing a linkage between the invader and  a 

harvestable resource, structured expert judgment (SEJ) can be used to bridge the knowledge gap 

(Cooke 1991). While SEJ is an incomplete substitute for biophysical experimentation, it provides 

important insights into management. SEJ allows for explicit treatment of uncertainty in cost-

benefit analysis and, as such, can inform managers about the economic value of physical 

experimentation aimed at reducing uncertainty (Peterman and Anderson 1999). SEJ has been 

widely applied for decades to estimate the human health impacts of air pollution (Morgan et al. 

1984), climate change drivers (Morgan 2011), invasive species impacts (Rothlisberger et al. 

2012), and changes in fisheries and marine ecosystems (Rothlisberger et al. 2012; Teck et al. 
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2010). A common challenge in SEJ is the proper aggregation of opinions across individuals with 

different levels of expertise. Some approaches use equal weights among experts while others use 

a performance-weighted average based on seed (test) questions with known answers, commonly 

known as Cooke’s method (Cooke 1991; Grigore et al. 2016). However, in cases with high 

uncertainty which require a diverse group of experts, seed questions can be difficult to frame 

appropriately (Grigore et al. 2016).1 The usefulness of seed questions has been questioned in 

instances where experts from various specialized fields were needed to quantify uncertainty in 

the medical field (Fischer, Lewandowski, and Janssen 2013; Soares et al. 2011). Many recent 

studies suggest that equal weighting is preferable to performance-based aggregation as it avoids 

overweighing counterintuitive results that can lead to biased expert combinations (Clemen 2008; 

Morgan 2014). Yet, despite this recent research into Cooke’s performance weighting scheme, the 

question remains how to vet expert opinion.  

This study avoids the use of seed questions and applies equal weighting after a multi-method 

approach is used to assure data quality and elimination of inconsistent experts. Cooke’s 

performance scoring is replaced by a coherence check eliminating illogic judgments. The study 

contributes a vetting technique to an ongoing area of research that focuses on multi-method 

approaches to expert elicitation (O’Hagan et al. 2006).  

The first method uses a discrete choice model (DCM) which is widely used to measure and 

predict human behavior but has found little application in expert elicitation (McFadden 1973). 

DCM uses scenarios to observe experts’ choices and does not require them to translate 

knowledge into probabilistic judgments as such assessments can be derived indirectly from 

estimated individual-specific utility functions (Schwoerer, Little, and Hayward 2018). Therefore, 

DCM broadens the expert pool and thus allows for later elimination of incoherent experts. 

Recent research into the trade-offs between increasing the expert pool and the level of expertise 

informants in the pool bring to the elicitation shows that pool expansion combined with 

screening outperforms Cooke’s method of post-elicitation weighting (Maestas, Buttice, and 

Stone 2014).  

The second method is an interval judgment in the tradition of (SEJ) but without seed 

questions (Cooke 1991). The SEJ elicits the range of parameter values for the uncertain quantity 

of interest. A coherence check between the two methods eliminates illogical judgments before 

aggregating remaining expert judgments applying equal weights. The joint probability 

distribution is then integrated into the risk analysis framework. The approach avoids some of the 

                                                 

1 As discussed, bioeconomic analysis of biological invasions often center on measuring existing impacts. In this 

context, expert elicitation that informs this analysis relies on experts who are knowledgeable or have witnessed 

existing effects (Rothlisberger et al. 2012). In contrast, expert elicitation studies aimed at predicting what an 

invader will likely do in an intact ecosystem are more difficult because the uncertainty is higher. This requires the 

expert pool to be broad because knowledge needs to be attained from different fields of knowledge (Maestas, 

Buttice, and Stone 2014).  
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limitations of Cooke’s approach, allowing for a more detailed vetting of expert opinion which is 

useful given the high level uncertainty and varied expertise.  

Economic damage assessments in commercial fisheries have gained attention in recent years 

as marine and coastal ecosystems face increasing human impact through trade, commerce, and 

development (D. Knowler 2005; Frésard and Boncoeur 2006). In North America, much of the 

ecological and economic research on invasion impacts to fisheries has focused on the Great 

Lakes region (Rothlisberger et al. 2012; Wittmann et al. 2014). Bioeconomic research on aquatic 

invasions in the Great Lakes quantified damages to ongoing invasions yet studies that quantify 

the value of preventing intact ecosystem services from being invaded are lacking. The risk from 

invasive species will likely not be eliminated when invasive species populations have established 

and irreparably impaired ecosystems (Doelle 2003).  The opportunity cost of the continued 

allocation of resources toward already impaired systems results in the forgone prevention of 

invasions into intact and highly productive ecosystems.  

The last wild salmon runs in the world provide a case study for quantifying the potential risk 

of aquatic invasive species on ecosystems of global economic significance. In Alaska, Pacific 

salmon (Oncorhynchus spp.) are the economic backbone of many coastal communities (Sethi, 

Reimer, and Knapp 2014; Knapp, Guettabi, and Goldsmith 2013). Wholesale values of Alaska 

salmon amounted to $1.28 billion in 2016, only $50 million less than Pollock, Alaska’s largest 

first wholesale value fishery (McDowell Group 2017). As human presence and activity in 

ecosystems in the Arctic and Subarctic increases, the threat of invasive species also increases, 

particularly for highly productive fisheries in this region (Short, Gross, and Wilkinson 2004). 

Yet, invasive species protection and prevention have received little attention (Schwörer, Federer, 

and Ferren 2014).  

This study was motivated by the discovery of Elodea spp. (Elodea), an invasive submersed 

aquatic plant, in three of Alaska’s salmon-producing watersheds. It was also recently found at 

Anchorage’s Lake Hood, the world’s largest floatplane base. Floatplanes serve as a pathway to 

spread the plant to remote freshwater sites, most of which are located in salmon habitats that 

have not yet been invaded (Carey et al. 2016). Lack of biophysical evidence on the ecological 

effects of Elodea for salmon production in Alaska freshwater habitat is related to an overall gap 

in research examining how invasive aquatic plants affect food web dynamics and fish as well as 

macroinvertebrate communities (Schultz and Dibble 2012). While non-native aquatic plants play 

similar roles compared to native aquatic plants, certain traits are problematic, such as rapid 

growth, the production of biochemicals that influence the growth and survival of other aquatic 

plant species in its vicinity, and phenotypic plasticity—the ability of genes to produce more than 

one trait when interacting with different environments. These are all characteristics found in 

Elodea (Schultz and Dibble 2012; Erhard, Pohnert, and Gross 2007). Information on the 

potential economic risk presented by the Elodea is critical for decision-making; yet, the lack of 

biophysical evidence relating Elodea to salmon abundance and productivity has prevented 

economic analysis (Carey et al. 2016). Expert elicitation related to Elodea’s potential effects on 
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salmon found that invasions occurring in salmon habitat are believed to possibly lead to both 

negative and positive outcomes for sockeye salmon (Schwoerer, Little, and Hayward 2018). 

These results underline the need for a bioeconomic risk analysis which weighs the various 

possible outcomes of an invasion. 

The research objective is to inform statewide management decisions for the treatment of 

Elodea and provide a first estimate of the range of damages related to potential invasions. The 

first section of this paper provides background regarding commercial sockeye salmon fisheries in 

Alaska. Next, a bioeconomic market valuation is developed that integrates SEJ-derived growth 

rates for sockeye salmon (Oncorhynchus nerka) with a market demand model which uses 

published commercial fisheries data (ADFG 2018, 2016). The SEJ approach is justified due to 

lack of data specifying the biological relationship between Elodea and salmon which prevents 

analysis of the structural changes to the stock recruitment relationship for salmon. The model’s 

primary purpose is to inform invasive species managers about the future costs and benefits of 

taking action to prevent further environmental and economic damages from the distribution of 

Elodea across Alaska.2 The range of outcomes suggests that negative consequences outweigh 

potential positive net benefits to salmon fisheries over a hundred-year timeframe. The magnitude 

of the most probable damages indicate that substantial investment is justified to keep productive 

ecosystems free of aquatic invasive species in Alaska. The paper ends with a discussion of the 

modeling approach and provides policy implications.  

2. BACKGROUND 

2.1 Elodea ecology, management, and history in Alaska 

There are two species of Elodea in Alaska that are also hybridized (Les and Tippery 2013; Thum 

2015 personal communication). Elodea canadensis (Canadian waterweed) and E. nuttallii 

(Nuttall’s waterweed)  are both native to North America between California (35N) and British 

Columbia (55N), but is not native to Alaska (Cook and Urmi-König 1985). Since the ecology of 

these two plant species is very similar, the following analysis refers to either of these two species 

as Elodea. The plant prefers sand and small gravel substrate in cold, static or slow-moving water 

to 9 m depth (Riis and Biggs 2003; Rørslett, Berge, and Johansen 1986). Elodea is tolerant of a 

wide range of environmental conditions and has successfully invaded aquatic ecosystems 

worldwide (Josefsson 2011)3. Cyclical population dynamics have been observed for E. 

canadensis for isolated populations peaking between three and ten years after invasion and 

declining or even disappearing thereafter (Heikkinen et al. 2009; Mjelde et al. 2012). Sudden 

                                                 
2 Note, the aim of the model is different from common population models developed for fisheries management, 

where structural changes to the stock recruitment relationship would be specified (D. Knowler 2005).  

3 Elodea is established in the British Isles and many other parts of Europe (Heikkinen et al. 2009)  Elodea is 

established in the British Isles and many other parts of Europe (Heikkinen et al. 2009)  
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collapses remain unexplained but have been observed throughout Europe (Simberloff and 

Gibbons 2004; Mjelde et al. 2012). In regulated rivers in its native range, Elodea has been found 

to encroach on spawning sites of Chinook salmon (Oncorhynchus tshawytscha) (Merz et al. 

2008). 

Common human-related pathways of introduction include the aquarium trade, boats, and 

floatplanes (Sinnott 2013; Strecker, Campbell, and Olden 2011). Natural dispersal includes 

flooding and wildlife transport (Spicer and Catling 1988; Champion, Winton, and Clayton 2014). 

In Alaska, Elodea reproduces vegetatively with stem fragments surviving desiccation and freeze 

(Bowmer, Jacobs, and Sainty 1995). Elodea has some of the highest fragmentation and 

regeneration rates among aquatic invasive plants causing rapid dispersal which presents severe 

challenges for mechanical removal (Redekop, Hofstra, and Hussner 2016). Possible management 

actions include draining and drying, herbicides, the introduction of herbaceous fish, and 

mechanical removal through suction dredging or hand pulling (Hussner et al. 2017). For the 

purpose of eradication, Fluridone and Diquat are herbicides that are most effective while 

mechanical methods cause populations to rapidly spread (Josefsson 2011). In Alaska, Fluridone 

and Diquat have eradicated Elodea in three waterbodies (Morton 2016). At concentrations 

around 6 ppb, Fluridone selectively removes Elodea with few non-target effects (Kamarianos et 

al. 1989; Schneider 2000).  

In Alaska, Elodea was discovered in Fairbanks (Interior Alaska) in 2010, drawing attention 

to an already established, but until then largely ignored, population in Cordova (Figure 1, Gulf). 

New infestations have been found every year since 2010. Aquarium dumps are the likely vector 

near urban locations, while floatplanes are the most likely pathway responsible for long-distance 

dispersal into remote roadless locations (Hollander 2014). It came as no surprise when, in 2015, 

Elodea was detected in Lake Hood (Figure 1, Cook Inlet), the world’s largest seaplane base 

(Hollander 2015). The discovery of Elodea 90 river miles downstream from an unmanaged 

infestation in Fairbanks was likely caused by flooding (Friedman 2015). The increasing 

frequency of new discoveries associated with previously unknown pathways underscores the 

importance of the issue for Alaska.  

2.2 Commercial sockeye salmon fisheries 

Alaska’s commercial sockeye salmon fisheries can be regionally divided into five large 

watersheds (Figure 1) (USGS 2017). The regions include Bristol Bay and Kuskokwim in western 

Alaska; Cook Inlet in Southcentral Alaska; Kodiak which encompasses the island of Kodiak and 

the southern coast of the Alaska Peninsula; and the Gulf which includes the Kenai Peninsula’s 

Gulf coast, Prince William Sound, and watersheds supporting the Copper and Bering River 
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fishing districts.4 These regions have varying seafood processing capacity, run sizes, harvest 

levels, and prices that depend on global market forces.  

Since the 1990s, Alaska salmon prices have experienced downward pressure caused by the 

rapid and sustained growth of farm raised salmon. Yet over the past decade, prices have 

recovered due to marketing efforts aimed at wild and sustainably-caught Alaska salmon. Also, 

disease outbreaks in salmon farms elsewhere have had positive price effects on Alaska salmon 

(Knapp, Roheim, and Anderson 2007).5 In 2014, wild salmon comprised about 30% of global 

salmon production by volume. Alaska sockeye salmon production is associated with the largest 

share (65%) of wild salmon sold on global markets. Of this share, 37% of wild Alaska sockeye 

are caught in Bristol Bay (McDowell Group 2015). With the Bristol Bay sockeye salmon fishery, 

it can be argued that Alaska sockeye production influences global prices (Knapp, Roheim, and 

Anderson 2007). Table 1 shows historical wholesale prices for the four main product categories 

for sockeye salmon—frozen, fresh, canned, and other.6 Given a globally traded product, 

variations in price exist and are correlated across regions (Table 2).  

 

Figure 1. Watersheds supporting commercial sockeye salmon fisheries that were part of this study. This study 

region was selected because Elodea is present in the Cook Inlet and Gulf regions. 

 

                                                 
4 The geographic focus is aimed at currently known Elodea infestations, excluding Southeast Alaska’s salmon 

fisheries from the analysis. 

5 Alaska’s constitution prohibits salmon farming in state waters within three nautical miles.  

6 While there are additional subcategories, the analysis focuses on these four categories for which wholesale prices 

are published (ADFG 2016b). 
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Table 1. Fisheries characteristics by region, 2006-2015 

Region 
Sockeye harvest (‘000 lbs) 

 Sockeye mean (SD) wholesale prices 

(real $/lbs) a) 

mean min max  canned Frozen fresh other b) 

Bristol Bay 154,193 92,000 184,792  $ 3.66 (2.4) $ 4.01 (2.3) $ 2.71 (1.1) $ 7.54 (2.5)  

Cook Inlet 18,920 12,266 36,216  n/a e) $ 4.19 (3.0) $ 3.40 (2.5) $ 8.24 (6.3) 

Gulf 16,386 8,004 24,785  $ 5.69 (2.9) $ 3.79 (2.7) $ 4.20 (2.4) $ 6.30 (2.9) 

Kodiak 11,980 7,692 17,007  n/a e) $ 3.22 (2.8) $ 3.12 (1.3) n/a 

Chignik c) 9,338 4,125 17,889  n/a $ 3.22 (2.8) n/a n/a 

Kuskokwimd) 746 329 1,379  n/a $ 1.11 (1.2) n/a n/a 

a) Mean (standard deviation) in 2015 USD adjusted for inflation using the U.S. Consumer Price Index. b) Salmon 

roe products Sujiko in Bristol Bay and mainly Ikura in Gulf. For Cook Inlet: fillets with skin no ribs. c) Assumes 

Kodiak prices due to lack of data. The analysis treats the Chignik fishing district as a separate region because of 

available harvest data. However, results are combined with Kodiak. d) Prices reported for the exclusive economic 

zone (EEZ) were used due to lack of data. e) Region stopped production of this product or production is very 

inconsistent from year to year due to swings in run size. Source: Alaska Department of Fish and Game Fisheries 

Management Annual Reports and Commercial Operators Annual Reports. 

 

 

Table 2. Correlation among regional wholesale prices for sockeye salmon, 2006-2015 

 Bristol Bay Cook Inlet Kuskokwim Gulf Kodiak Chignik a) 

Bristol Bay 1.00      

Cook Inlet 0.89 1.00     

Kuskokwim 0.06 0.26 1.00    

Gulf  0.78 0.89 0.44 1.00   

Kodiak  0.80 0.90 0.18 0.73 1.00  

Chignik a) 0.80 0.90 0.18 0.73 1.00 1.00 

a) Due to lack of data, assumes prices behave similarly to Kodiak. Note, correlations are based on just one 

product: frozen headed and gutted sockeye salmon. Prices published for the exclusive economic zone (EEZ) are 

used for the Kuskokwim due to lack of location-specific price data. Note, Spearman’s rank-ordered coefficients 

are more appropriate for modeling correlation among distributions compared to Pearson’s correlation coefficients 

(Palisade Corporation 2016). Source: ADFG (2016b) 

 

There are also regional differences in seafood processors and the sockeye salmon products 

they produce. Table 3 shows region-specific production shares and overall processing yields. The 

latter is an average equal to the ratio of output weight sold over input weight bought by 

processors (Knapp, Roheim, and Anderson 2007).  
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Table 3. Production shares and processing yield by region, 2006-2015 

Product Bristol Bay a) Cook Inlet b) Kuskokwim Gulf c) Kodiak b) Chignik a) 

Canned 0.32   0.34   

Fresh 0.02 0.12  0.08 0.12  

Frozen 0.64 0.86 1.00 0.57 0.88 1.00 

Other 0.02 0.02  0.01   

Processing 

yield d) 0.70 0.78 0.75 0.71 0.78 0.75 

a) McDowell Group (2015). b) Author estimates based on observed historic prices (ADFG, 2016b; Knapp et al., 

2007).c) Knapp et al. (2007). d) Weighted using product-specific yields: canned 0.59, fresh 0.97, frozen (headed 

& gutted) 0.75, other 0.75 (Knapp et al., 2007; author assumptions for other). 

3. METHODS 

The damage assessment approach consists of two components. The first describes the elicitation, 

evaluation, and aggregation of expert opinion on the impacts of Elodea on sockeye salmon 

productivity in Alaska. Two methods were used to accomplish this, a Discrete Choice Model 

(DCM) (Schwoerer, Little, and Hayward 2018) and Structured Expert Judgment (SEJ) (Cooke 

1991). The second component is the bioeconomic model used to estimate changes in consumer 

surplus (Freeman 2003). This approach follows the methodology of previous assessments of 

economic impacts from invasive species in the Great Lakes (Rothlisberger et al. 2012). The 

section ends with an outline of the biological and economic parameter values used in estimating 

potential damages to sockeye salmon fisheries. 

3.1 Expert judgment 

In order to quantify uncertainty about Elodea’s effects on salmon habitat and population the 

approach drew on broad expertise from three areas of knowledge: (1) Pacific salmonids in 

freshwater habitats, (2) the ecological role of submersed aquatic vegetation, and (3) freshwater 

aquatic invasive plants. An extensive literature review of nearly 300 sources identified an expert 

pool of 111 individuals with combined knowledge in all of these areas. Expert selection was 

based on the number of citations in peer-reviewed publications using Google Scholar. Due to the 

localized issue of Elodea in Alaska and the small number of potential experts, the expert pool 

was expanded to include fishery biologists, fishery scientists, fish habitat biologists, and invasive 

species specialists from state and federal resource management agencies. These individuals 

brought knowledge on localized variability and local observations to the expert pool as all of 

them had or continue to work with Alaska salmon, aquatic systems, or invasive species.  

For a pretest, we initially followed Cooke’s method which asks experts questions with known 

answers, also called seed or calibration questions (Cooke, 1991). Based on experts’ performance 

in these seed questions, their judgment is later weighted giving more weight to well performing 
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experts. Several attempts to employ Cooke’s (1991) method failed because of the difficulty 

finding questions appropriate to all diverse areas of expertise. Therefore, instead of relying on 

inappropriate seed questions the DCM and SEJ were used to evaluate experts and test for 

coherence of opinion.  

The DCM asked experts to choose from hypothetical salmon habitat scenarios that they 

believed would result in the long-term persistence of salmon. The scenarios varied in their 

description of habitat and invasion characteristics (Schwoerer, Little, and Hayward 2018).7 Based 

on the DCM data, each expert’s probability of choosing invaded over uninvaded habitat for 

persistent salmon populations was estimated (Schwoerer, Little, and Hayward 2018). In a second 

follow-up exercise, a SEJ was used to ask experts to state intervals for the annual average 

sockeye growth rates to be expected in Elodea-invaded habitat. Both the DCM and SEJ included 

an extensive background document informing experts about Elodea’s known ecological effects 

and were aimed at bridging knowledge gaps and reducing overconfidence in the interval 

judgment (Speirs-Bridge et al. 2010).8 In the SEJ the annual average sockeye growth rate was 

referred to as “salmon production over many life cycles, manifesting itself as a long-term trend 

in abundance” (McElhany et al. 2000). The elicited growth rates apply to the whole population 

of sockeye salmon and do not specify Elodea’s effects on specific age structures. As such, the 

first question in the elicitation specified the 25th and 75th percentile of the probability distribution 

related to the annual average sockeye growth rate in Elodea-invaded habitat, the second question 

established the tails of the distribution, and the third question showed the median. The fourth 

question tested expert’s comprehension of the task (Speirs-Bridge et al., 2010) and was also used 

to further eliminate experts from the pool (see below).  

Q1. Imagine Alaska's sockeye salmon systems would be invaded with Elodea and you had 

long-term population records with estimated sockeye growth rates for a random sample of 100 of 

these sockeye systems. What range of typical sockeye growth rates would you expect to see, that 

is, rates you would see about half of the time?  

Q2. What is the very lowest and very highest sockeye growth rate you would expect to see, if 

Alaska's sockeye salmon systems would be invaded with Elodea? Think about the extreme cases, 

in other words the tails of the distribution.  

Q3. What is your best guess for the sockeye growth rate you would expect to see most often, 

if Alaska's sockeye salmon systems would be invaded with Elodea? 

                                                 
7 Environmental characteristics included location of Elodea within the salmon system, description of the salmon 

system, dissolved oxygen levels, predation, prey abundance, and other factors. 

8 Even though the existing literature describes the reductions in overconfidence relating specifically to the 4-step 

interval elicitation procedure, the more elaborate nature of the scenario-based approach prior to the interval 

judgment is believed to have similar overconfidence-reducing effects. While a test of this assumption could be 

subject to future research, it is outside the scope of this study.  
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Q4. For sockeye salmon, what sockeye growth rate would cause you to be concerned about 

extirpation of the population? Please specify in % and use a "-" (minus sign) for decline rates. 

Based on the probability of salmon persistence in Elodea-invaded habitat estimated through 

the DCM and the stated sockeye growth rates in the SEJ a coherence check was applied. The 

purpose of the coherence check was to identify experts whose probability of sockeye salmon 

persistence in Elodea-invaded salmon habitat from the DCM was consistent with the annual 

average sockeye growth rates they believed would be possible in Elodea-invaded salmon habitat 

stated in the SEJ. A logical and consistent expert either indicated a lower than 50:50 chance of 

persistence in Elodea-invaded habitat in the DCM exercise and stated a negative median growth 

rate in the SEJ or a higher than 50:50 chance of persistence in the DCM and a positive median 

growth rate in the SEJ. Inconsistent experts (persistence/negative or extirpation/positive) were 

excluded from further analysis. 

Assuming a standard normal distribution, individual expert’s interval judgments from Q1 to 

Q3 were combined applying equal weights to each expert (Cooke 1991). Figure 2 presents the 

expert vetting and aggregation process in more detail.   

 

Figure 2. Expert vetting process used for aggregating expert opinion on annual average sockeye growth rates in 

habitat invaded by Elodea.  

3.2 Bioeconomic model 

Many commercial salmon fisheries in Alaska create significant economic rent indicated by the 

high permit prices in for example the Bristol Bay salmon fisheries (Knapp, Guettabi, and 

Goldsmith 2013). Biological invasions in this context could be seen as dissipating rent, therefore, 

we follow a benefit approach to the economic valuation of ecosystem services impaired by a 

biological invasion (Freeman 2003).  
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If Elodea changes the provisioning of ecosystem services—the amount of harvestable sockeye 

salmon—the introduction of Elodea changes the benefits consumers derive from the resource. 

Consumer surplus provides an economic measure of ecosystem benefits and is calculated by 

taking the difference between the maximum amount consumers are willing to pay for the 

resource and what they are actually paying. For example, if the consumer only pays $6 per pound 

for sockeye salmon, but would be willing to pay up to $10 per pound, the difference of $4 is the 

benefit to that consumer, which aggregated across society is equal to consumer surplus.  

The model calculated the change in consumer surplus that resulted from a change in annual 

harvest and a consequential change in the real price per pound ($/lbs), assuming a linear demand 

function (Freeman 2003). Since the SEJ-derived intervals entailed positive and negative sockeye 

growth rates, this approach allowed for potential positive and negative net changes in consumer 

surplus. These net changes imposed by quantity changes in annual harvest were equal to the 

change in the area under the ordinary (Marshallian) demand curve and equal to the consumer 

surplus in year t minus the consumer surplus in year t+1. In mathematical terms, annual damages 

per region were expressed as follows: 

  (1) 

where γ was processing yield, h was sockeye harvest in lbs, p was the real (inflation-adjusted) 

per lbs wholesale price for sockeye salmon in 2015 USD received by Alaska primary processors. 

Prices were weighted by sockeye product ratios commonly observed in the Alaska processing 

sector (Table 3). The choke price at which demand ceases is equal to p. Using the own-price 

elasticity of demand, ε, the choke price equals p’ = ht/ε + pt . Further, harvest in period t+1 is 

expressed as a function of SEJ-derived sockeye growth rates θ, thus ht+1 = f(ht,θ). After 

substituting and rearranging, Equation 1 becomes 

. (2) 

The functional response of harvest to an Elodea invasion was represented by ht+1 = f(ht,θ). 

Consistent with common practice in fisheries modeling, catch was assumed to be proportional to 

stock size and fishing effort (Haddon 2011).9 Year-by-year changes in harvest were modeled 

using density-dependent population dynamics in logistic form such that harvest levels at t+1 

equaled ht+1=ht(1+θ(1-ht/K)), where K is the ecologically limited harvest. Due to the seasonal 

reproduction of salmon, the discrete time model with an annual time-step is well suited for 

modeling the growth changes in salmon (Haddon 2011).  

                                                 
9 Under this assumption the catchability of the fishing fleet does not change over time or stock size. 
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The logistic growth model describes the population dynamics for an entire population of 

salmon irrespective of age-class, making it consistent with the SEJ-derived population growth 

rates. Due to a number of limitations the logistic growth model is not often used to describe 

population dynamics in fisheries (Larkin 1977), but it does have the advantage of being useful in 

situations where data is limited (Beverton and Holt 1957; Haddon 2011). The logistic growth 

model differs from commonly used population models like the Ricker model in how it describes 

population change at very high population densities (Ricker 1975). In the logistic growth model, 

growth at very high densities declines more rapidly, an assumption supported by the 

encroachment effects of Elodea observed on spawning adult salmon (Merz et al. 2008). In 

addition, the limiting environmental conditions of Elodea’s encroachment into salmon spawning 

beds is captured by the harvest limitation (K) in the logistic model but is lacking in an 

exponential growth model.  

Under exponential growth, the expert-elicited positive effects of Elodea for salmon would 

result in runaway growth, or the believed negative effects would cause short-term extirpation—

both biologically unrealistic outcomes. While long-term persistence is not guaranteed under the 

logistic growth model, the model indicates that, despite environmental perturbation, salmon 

populations can persist long-term. The invasion of Elodea in the British Isles recently reached its 

ecological limit, after 65 years since introduction (NBN 2015). The NBN data showed that 

landscape-wide spread of an Elodea invasion over a much longer timeframe compared to the 20-

year time horizon considered for persistent salmon populations in invaded habitat (Peterson et al. 

2008). Research on salmon habitat and Elodea occurring in its native range suggests that the 

effects of Elodea encroaching on spawning adults has had incremental rather than catastrophic 

consequences (Merz et al. 2008). The effects of Elodea on salmon in the invasive range may 

manifest themselves over a longer timeframe without immediate catastrophic outcomes. 

Moreover, the boom and bust cycle of Elodea populations can lead to temporarily more or less 

pronounced biological effects for different life stages over time (Simberloff and Gibbons 2004). 

For these reasons, the logistic growth model was chosen to describe the biological relationship 

between Elodea and salmon.  

The model was initialized in year zero by the pre-invasion historical sockeye harvest, h0, and 

the pre-invasion historical wholesale prices per region, p0. Potential economic damages to 

commercial sockeye salmon fisheries were expressed over a 100-year time horizon in the 

following two ways. First, the annual changes in consumer surplus estimated by Equation 2 are 

converted into net present value terms (NPV)  

     

  (3) 

where d is the real social discount rate and takes into account the public’s time preference related 

to natural capital. NPV is a measure for natural capital, from which a constant flow of ecosystem 

services can be calculated such that   
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     .   (4) 

NPV measures the value of the stock of natural capital (Equation 3) at time t, annualized 

NPV is the constant flow of ecosystem services associated with natural capital (Equation 4). Put 

simply, natural capital is wealth, ecosystem services are income. The regional estimates were 

summed to show combined statewide damages.  

Several simplifying assumptions were made relating to the economic and environmental 

conditions of the commercial salmon fisheries and the invasion by Elodea. First, the analysis 

estimated potential damages to fisheries should the regions become invaded by Elodea in the 

first year of a 100-year time horizon and remain unmanaged. Therefore, the estimated damages 

were hypothetical for regions that have not yet been colonized by Elodea. Second, the predicted 

changes caused by Elodea only change the weight of fish landed and do not alter the consumer 

demand function. Third, market conditions were assumed to be in equilibrium so that there were 

no incentives for harvesters and processors to enter or exit the market. Similarly, participation by 

fishing permit holders did not change over time. Fourth, wholesale prices were assumed to proxy 

prices for end consumers. Analysis based on retail prices would have been more difficult, 

complicated by exchange rates and a number or other issues.  Retail prices exhibit variations 

which reflect factors, such store location, parking, and the availability of other products, which 

can’t be attributed to salmon (Knapp et al., 2007). Lastly, from an economic perspective, the 

fishery was assumed to be optimally managed, meaning the ecological and economic systems 

were in equilibrium throughout the 100-year time horizon. This assumption ignores various 

management inefficiencies such as over-capitalization which remains an issue for Alaska salmon 

fisheries due to regulations resulting in a derby-style “race for fish” (Knapp and Murphy 2010). 

Alaska commercial salmon fisheries, however, are sustainably managed as certified by the 

Marine Stewardship Council (MSC) (MSC 2017; Clark et al. 2006).  

3.3 Model simulation and parameter assumptions 

The deterministic nature of the economic valuation did not require a simulation approach. 

However, Monte Carlo simulation was used to estimate NPV for a range of parameter inputs. 

Historical data was used to determine the range of salmon harvests and prices. Due to the 

deterministic nature of the model and contrary to common stochastic modeling approaches, the 

simulation held these uncertain parameters fixed over the model’s time horizon. The simulation 

tested up to 10,000 possible input assumptions for each uncertain parameter, generating a 

distribution for Equations 3 and 4. The simulation stopped when there was a 95% chance that the 

mean NPV was within ±3% tolerance of its true value (Palisade Corporation, 2016b).10  

                                                 
10 Sampling type: Latin Hypercube, random number generator: Mersenne Twister. 
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Uncertain parameters include the expert-elicited annual average growth rate for sockeye 

salmon, θ, the pre-invasion sockeye harvest in year zero, h0, pre-invasion wholesale prices, p0, 

own-price elasticity of sockeye demand, ε, and the social discount rate, d. For the annual average 

growth rate for sockeye salmon, θ, the equally-weighted percentiles were used to fit a normal 

distribution describing the joint probability density function for θ. A normal distribution is 

suitable for this purpose because many unknown ecological processes are likely at play in 

Elodea-invaded habitat and average out over a large sample (Hilborn and Mangel 1997). For 

example, long-term variation of salmon returns is also driven by Pacific climate variability and 

other factors (Hare, Mantua, and Francis 1999). Since the return of salmon from different 

populations can vary within the same year, each harvest distribution is assumed to be 

independent of all others (Schindler et al. 2010).  

To describe the variation of historical harvest, region-specific commercial sockeye harvest 

records in pounds landed from 2006 to 2015 were used to fit a uniform distribution (Table 4). 

For the purpose of testing different model assumptions surrounding historical harvest, this non-

informative distribution was found to best accommodate this purpose across regions. The 

lognormal distribution is commonly used in economics to describe the distribution of income, 

wealth, and prices and was used to specify the pre-invasion wholesale price in each region (Table 

1 and Table 4) (Aitchison and Brown 1976). The correlation of prices among regions was 

modeled based on estimated Spearman’s rank-order correlation coefficients observed between 

2000 and 2015 (Table 1). To derive this correlation, the model generated rank-correlated pairs of 

prices for two regions at a time following a distribution-free approach to induced rank correlation 

(Iman and Conover, 1982; Palisade Corporation, 2016a).  

Reliable market data on prices and quantities was then used to derive estimates of economic 

benefit. In order to measure changes in consumer surplus, the approach requires an estimate of 

the own-price elasticity of demand. The elasticity describes how responsive consumer demand 

for salmon is to changes in the price of salmon (Freeman 2003). With this information, 

associated changes in consumer surplus can be estimated. Unfortunately, there are no specific 

estimates of own-price elasticities for Alaska sockeye salmon. Estimates from elsewhere in 

North America serve as a proxy. A variety of sources were consulted that estimated the elasticity 

of demand for fresh and frozen wild sockeye salmon in the Pacific Northwest, Oregon, or 

Canada (DeVoretz 1982; Wang 1976; Johnston and Wood 1974; Swartz 1978). Due to farmed 

salmon dominating world markets, more recent demand investigations have focused on farmed 

instead of wild salmon demand (Asche, Bard, and Atle 2019; Andersen, Roll, and Tveteras 

2008). All estimates indicated elastic demand, |ε| > 1, and ranged between a minimum of –12.78 

and a maximum of –1.472 (DeVoretz 1982; Wang 1976). A uniform distribution was applied 

using maximum and minimum values related to elasticity estimates as bounds to reflect the 

uncertainty in these historical estimates (Table 4). There are several arguments that would 

support higher elasticities |ε| > 1; the most important of which is the availability of very close 

substitutes to wild sockeye salmon, such as coho, pink, or chum salmon.  Wild sockeye is also 

considered a normal good where demand increases with rising income and vice versa. To the 
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contrary, brand loyalty to a wild and sustainably harvested product is an argument for more 

inelastic demand if current marketing efforts and consumer awareness continue (McDowell 

Group 2015). 

Since our analysis is focused on changes to consumer welfare and the benefits to society 

from public investments in cleanup that are more or less uncertain for current and future 

generations, a triangular distribution of discount rates was used to account for such uncertainty. 

Much uncertainty does not surround the cost of capital due to Alaska's Aa2 credit rating, but 

rather relates to whether successful statewide eradication of elodea can be achieved. Therefore, 

the distribution of the marginal opportunity cost of capital chosen for the analysis included the 

risk free rate as well as a rate much higher than the risk free rate, comparable to the 6% used by 

Rothlisberger et al. (2012) for their analysis of economic damages caused by the invasion of 

Dreissena mussles in the Great Lakes. Also, the real 30-year social discount rate recommended 

by OMB ranges between 1% and 6% (OMB 2016). The triangular distribution with a most likely 

rate of 3% is consistent with best practices in financial valuation (Winston and Albright 2016). A 

distribution also reflects varying time preference rates observed across society. This approach is 

suitable for intergenerational time horizons and in cases where damages accrue in the private as 

well as public sectors as in the Elodea case suggests the use of multiple discount rates (Arrow et 

al. 2013; Baumgärtner et al. 2015).11 Table 4 summarizes the model parameter assumptions used 

in the analysis. 

 

                                                 
11 The upper bound of 6% reflect real annual rates of return for Alaska’s commercial salmon fisheries (Huppert, 

Ellis, and Noble 1996). The lower bound is consistent with recent research which suggests that  impacts to 

ecosystem services should be discounted at much lower rates compared to impacts related to manufactured capital 

(Baumgärtner et al. 2015). A reduction in harvest due to an Elodea invasion could result in fishing vessels being 

on dry dock rather than fishing with private opportunity costs to capital. 
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Table 4. Bioeconomic model parameters 

Parameter Units 
Region-

specific 
Specification Source 

Annual average sockeye growth rate of 

salmon occupying Elodea-invaded 

salmon habitat,  

decimal no Normal (–0.0522, SD: 0.1388) This study 

Pre-invasion harvest,   lbs yes Normal (see Table 1) ADFG 2016a 

Pre-invasion wholesale pricea), p0 2015 USD yes Lognormal (see Table 1) ADFG 2016b 

Own-price elasticity of demand, ε decimal no Uniform (–12.78, –1.472) 
Wang 1976; 

DeVoretz 1982 

Ecological limit of sockeye harvest, K lbs yes Max. hist. harvest (see Table 1) ADFG 2016a 

Processing yield, γ decimal yes See Table 3 Knapp et al. 2007 

Real social discount rate, d decimal no Tri (0.01, 0.03, 0.06) 
Rothlisberger et al. 

2012, OMB 2016 

a) Weighted by the region-specific sockeye product amounts for frozen, canned, fresh, and other product categories 

(see Table 3). 

2.4 Sensitivity analysis 

A sensitivity analysis was used to test the robustness of the estimate and contained two parts. 

First, Latin Hypercube sampling was used to randomly draw input parameter values from the 

distributions outlined in Table 4 (Palisade Corporation 2016). Second, the combined uncertainty 

of all the input parameters was then measured by assessing the variance of the loss distribution 

using 100,000 iterations.  

 

4. RESULTS 

4.1 Coherence check of expert judgment 

A total of 56 experts participated in the DCM and 44 experts took part in the SEJ focused on the 

judgment of annual average sockeye growth in Elodea-invaded habitat. Five of the remaining 

experts were unreachable or had retired by the time of the follow-up interval judgment. Six of 

the remaining experts were unwilling to provide interval judgments and stated lack of knowledge 

or unfamiliarity with sockeye growth rates as reasons for not responding. One of the remaining 

experts did not complete the full interval judgment. Of the 44 participating experts in the interval 

judgment, five experts stated positive sockeye growth rates when asked about growth rates of 

populations that would cause them to be concerned about extirpation. Consequently, these 

experts were eliminated. The scatterplot in Figure 3 A shows how the 39 remaining experts 

varied in their opinion between the DCM and the SEJ. The vertical axis indicates each expert’s 

probability of sockeye persistence as estimated by the DCM and the horizontal axis represents 


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the expert’s best estimate for the annual average sockeye growth rate elicited in the SEJ. A total 

of eight experts provided illogical estimates in the SEJ and are illustrated by triangular markers 

(Figure 3 A). The eight experts were eliminated before aggregating their interval judgments to 

form a joint and normal probability distribution (Figure 3 B). This normal probability 

distribution depicted a 37% chance of observing positive annual average sockeye growth rates in 

Elodea-invaded habitat (Mean: –0.0522, SD: 0.1388). This distribution of the combined expert 

opinion incorporated both Elodea’s negative and positive potential growth effects on sockeye 

salmon. 

A B 

 

Figure 3. Exhibit A) presents the coherence check comparing expert’s probability of sockeye persistence as 

calculated by the DCM with annual average growth rates for sockeye populations in Elodea-invaded salmon habitat 

from as stated in the SEJ. Exhibit B) shows each coherent expert’s believed distribution of average annual sockeye 

growth rates in Elodea-invaded salmon habitat (25th, mean, and 75th percentile). 

4.2 Potential economic loss 

Figure 4 illustrates the non-discounted annual loss in consumer surplus (in 2015 US dollars) over 

the 100-year time period for Bristol Bay. Annual loss is not only increasing, it becomes 

increasingly more uncertain in future years.   Consistent with expert opinion identifying some 

potential for positive sockeye growth and positive net benefits in Elodea-invaded salmon habitat, 

the 90% uncertainty bars extend below the zero-damage line.  

Equation 3 was used to calculate the net present value of potentially lost natural capital 

which amounted to a mean of $5.1 billion for all five regions combined (90% CI: –$4.6 billion in 

net benefits, $20.0 billion in damages) (Table 6). A more detailed look at the NPV distribution 

and 90% uncertainty range show that despite the 35% probability of positive ecosystem services 

(negative damages), the upper bounds of damages were much larger than the potential benefits. 

The associated constant annual loss in ecosystem services for all five regions combined amount 

17

Schwoerer et al.: Aquatic Invasion Diminishes Ecosystem Services from Alaska's Salmon Fisheries

Published by Digital Commons @ Center for the Blue Economy, 2019



to a mean loss of $159 million annually (90% CI: –$144.4 million in net benefits, $577.3 million 

in damages) (Table 6). Across the five regions, this estimate ranged between a mean of $0.2 

million in annual damages in the Kuskokwim to $111.9 million in annual damages in Bristol Bay 

(Table 6). Considering that the annual real (inflation-adjusted) wholesale value of Bristol Bay 

sockeye ranged between $221 and $458 million in the past ten years, the estimated annual 

damages from Elodea would be equivalent to a third to two thirds reduction in wholesale value 

(McDowell Group 2015).  

 

 

Figure 4. Annual non-discounted consumer surplus loss over the next 100 years assuming Bristol Bay’s 

sockeye salmon habitat is invaded by Elodea and remains unmanaged. 

 

Table 1. Potential damages to commercial sockeye fisheries by region ($ million) 

Region 

Change in ecosystem services 

(NPVannual) 

 Change in natural capital 

(NPV) 

Mean 5% 95%  Mean 5% 95% 

Bristol Bay 111.9 –101.0 401.6  3,558.6 –3,175.8 13,957.5 

Cook Inlet 23.3 –26.1 95.0  739.4 –834.4 3,196.9 

Gulf 15.0 –17.3 56.3  474.8 –547.8 1,920.7 

Kodiak 9.0 –8.5 38.8  287.5 –267.7 1,283.5 

Kuskokwimd) 0.2 –0.3 1.0  6.8 –7.8 34.3 

Total  159.4 –144.4 577.3  5,067.1 –4,589.5 20,029.7 

 

Reasons for the differences are linked to the varying regional characteristics discussed above. 

Bristol Bay shows the largest economic impact followed by Cook Inlet, Gulf, Kodiak, and 
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Kuskokwim regions (Table 6). Important to note is that across all regions, the most probable 

outcomes are showing loss. 

5. SENSITIVITY ANALYSIS 

The SEJ-derived annual average sockeye growth rates in Elodea-invaded salmon habitat 

contributed to more than half of the variance observed in the simulated NPV distribution. This 

result is not surprising considering the large uncertainty in this parameter. Some of the lowest 

growth rate assumptions increased the mean loss by over $8 billion, while some of the largest 

growth rates decreased the mean loss by $8 billion, resulting in a mean of $3.4 billion in net 

benefits. The discount rate and Bristol Bay wholesale price for frozen sockeye product 

contributed much less to the variance than the growth rate (Table 7). A Bristol Bay price 

assumption of $18.59/lbs increased losses by $4.4 billion, whereas $0.82/lbs reduced losses by 

$2.2 billion (Table 2.7). Sensitivity of model outcomes to assumptions surrounding the own-

price elasticity of demand were insignificant and contributed less than 1% to variance in NPV, 

less than wholesale prices in other regions (not shown).12 As expected, the sockeye growth rate 

and discount rate both were negatively correlated with damages whereas wholesale prices were 

positively correlated (Figure 5). The effect of positive sockeye growth rates in Elodea-invaded 

salmon habitat (θ) on the mean NPV was reduced by the harvest constraint, creating a convexity 

of the solid line in Figure 5 above the 70th input percentile. Initial harvest assumptions did not 

significantly contribute to variance in NPV.  

 

Table 2. Sensitivity of annualized damage estimates to parameter assumptions with the largest 

influence on simulation outcomes 

  
Change in mean NPV  

(billions 2015 USD) a) 

 
% Contribution to 

variance 

Lowest input 

assumption 

Highest input 

assumption 

Annual average sockeye growth rate,  52.8% 8.8 -8.7 

Discount rate, d 5.6% 5.0 -2.9 

Price for frozen product in Bristol Bay, p0 b) 6.6% -2.2 4.4 

Own-price elasticity, ε 0.22% -0.7 0.9 

a) Mean NPV equal to $5.188 billion. Changes are calculated holding all other parameters constant at their mean 

levels. b) Similar changes relate to other frozen product prices in the Gulf, Chignik, Cook Inlet, and Kodiak regions. 

 

                                                 
12 A test using a triangular distribution with a peak of -4.82 lead to mean damages within 0.1% of the shown 

result.an 


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Figure 5. Change in mean NPV for all regions combined dependent on percentile changes related to the three 

parameters contributing the most to variance in the NPV distribution. 

6. DISCUSSION 

This study offers a damage forecast related to Elodea’s effect on sockeye salmon fisheries that 

stands in stark contrast to comparable bioeconomic damage assessments of aquatic invasive 

species elsewhere. This study followed methodology used in estimating fisheries damages of 

aquatic invasive species in the Great  Lakes and as such offers a direct comparison of damages 

(Rothlisberger et al. 2012; Rosaen, Grover, and Spencer 2012). In their highest of four scenarios, 

Rothlisberger et al. (2012) estimated the cumulative damages related to Dreissena mussles 

invading the Great Lakes through marine shipping at $2.16 billion over the next fifty years. 

Weighing the damages from biological invasions in the Great Lakes to the transportation savings 

associated with shipping, the primary pathway for invasions, the damages outweigh the 

transportation cost savings by $750 million. In contrast, this study estimates the cumulative mean 

damages to commercial salmon fisheries in Alaska at $5.1 billion over the next 100 years.13  

There are a number of contributions made by this examination. First, the analysis explicitly 

addresses uncertainty in the predicted damage distributions by applying a unique coherence 

check for vetting expert opinion. The approach taken is more conducive to a larger expert pool 

because it does not require probabilistic statements and avoids the use of seed questions, which 

                                                 
13 Rothlisberger et al. (2012) presented cumulative damages, thus, the annual damages were recalculated to provide 

comparison. Also note, the economic benefits of Elodea, in specific the non-market values related to use of 

Elodea in aquariums is insignificant. In addition, the positive effects of Elodea for salmon fisheries were 

accounted for by this study.  
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are often difficult or impossible to frame for experts from different fields. Thus, the multi-

method approach to expert elicitation offers wider application across specialized fields. 

Additional options for combining expert opinion include Bayesian approaches or the use of 

geometric means which are limited to positive values (logarithmic opinion pool) (O’Hagan et al. 

2006). While these methods vary in ease of application, there is disagreement on how well each 

one performs in specific situations (Hammitt and Zhang 2013; O’Hagan et al. 2006; Morgan 

2014; Clemen 2008). Besides the simple application of the equal weights method for post-

elicitation, the multi-method approach performed well but will require further performance 

testing in a broader range of applications (Morgan 2014).  

Second, the study informs invasive species management not only about the potential negative 

economic consequences of an invader but also accounts for the invader’s ability to aid in the 

growth of a harvestable resource. Few studies assessing the economic impacts of biological 

invasions account for multi-directional effects of an invasion (Gleditsch and Carlo 2011). The 

observed range of expert opinion on Elodea’s growth effects on sockeye salmon is consistent 

with research pointing towards various positive and negative effects of aquatic invasive plants on 

fish species and supports the expert elicitation approach taken (Schultz and Dibble 2012). Third, 

the benefit approach to valuation used publicly available data on fish harvest and wholesale 

prices, providing a more reliable method when compared to economic valuation techniques 

based on stated preference approaches (e.g., contingent valuation) (Freeman 2003). Fourth, the 

study is in contrast to most economic invasive species assessments that estimate damages only 

after substantial and often irreversible injury has occurred to native ecosystems (Rothlisberger et 

al. 2012; Lodge et al. 2016).  

The sensitivity analysis showed that results are robust considering the assumptions. The 

mean damages could be underestimated for the following reasons. First, the study only included 

sockeye salmon, which since 1984 amounted to half of the wholesale value of Alaska salmon 

(ADFG 2016)14. Second, the analysis leaves out potential effects on other sectors such as 

recreational or subsistence fisheries. For example, in Bristol Bay other research found that 

recreational and subsistence fisheries can amount to  more than twice the net economic value 

attributable to the commercial salmon fishery (Duffield et al. 2013). Third, the study does not 

quantify the effects of Elodea on other ecosystem services. For example, there is evidence that 

Elodea affects nutrient cycling (Ozimek, Donk, and Gulati 1993), reduces lakefront property 

values by up to 16% (Zhang and Boyle 2010), and has severe impacts on biodiversity (Mjelde et 

al. 2012). In addition, Elodea invasions of remote waterbodies can also affect floatplane access 

and lead to recreation losses. Some of these limitations also underline that the true value of 

ecosystem services that are affected by Elodea are likely higher and cannot solely be expressed 

in monetary units. However, damages would likely be smaller if the model would account for the 

varying spatial dispersal across Alaska by for example the floatplane pathway. Additionally, a 

                                                 
14 Sockeye salmon amount to 26% of Alaska’s commercial salmon catch in volume.  
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more detailed model would also account for the probability that isolated elodea populations 

collapse naturally.    

Fourth, potential damages to salmon harvesters as expressed by changes to the producer 

surplus are not accounted for in the framework. A production function approach, where habitat 

quality is a direct input into salmon production, could measure such welfare changes (D. J. 

Knowler et al. 2003). Fifth, the assumption of ordinary Marshallian demand prevents a more 

detailed analysis of how the underlying individual consumer preferences could change given that 

the invasion of Elodea changes the quality of fish or consumers’ perceived changes to 

environmental quality. For example, consumers may be hesitant to buy wild Alaska salmon 

knowing that the species’ existence is threatened by aquatic invasive species. In instances where 

the quality of the ecosystem service is of concern, measures of compensating or equivalent 

surplus would be more appropriate.  Last, the estimated damages do not include the potential 

cost of managing Elodea and, thus, do not provide a full accounting of the social costs of a 

potential invasion.  

Damage assessments are usually based on empirical evidence of economic and ecological 

changes after invasions while controlling for different drivers of ecosystem and human system 

conditions.  Our early-stage assessment of potential damage lacks empirical data on changes 

resulting from the invasion. Obtaining expert knowledge provided a feasible solution to data 

limitation, while being able to explicitly quantify uncertainty in the estimates. Some 

simplifications were needed. The use of the logistic growth model ignores specific age-structure 

effects of Elodea on salmon and also ignores correlation between growth rates and carrying 

capacity. Low levels of dissolved oxygen associated with crashing Elodea populations are a 

concern for freshwater life stages (Schwoerer, Little, and Hayward 2018) and encroachment of 

Elodea in salmon spawning beds is a concern for spawning adults in other locations outside 

Alaska where Elodea occurs in its natural range (Merz et al. 2008). These density-dependent 

effects would likely have higher impacts on sockeye populations spawning in slow moving 

streams and shallow water depth that is more suitable to Elodea compared to lake spawners in 

deeper waters (Braun and Reynolds 2014; Dodds and Biggs 2002).  

Detailed age-structure data would allow analysis of fisheries management actions under an 

invasion scenario. The application of the logistic growth model instead focused on explaining the 

effects of Elodea on an entire population of salmon irrespective of age classes and is not suitable 

to provide fisheries management advice (Larkin 1977). Recognizing that expert elicitation is no 

panacea for biophysical research that establishes the ecological relationship between the invader 

and the harvestable resource, expert elicitation does however, enable researchers to quantify a 

first damage estimate from which further research can be expanded. 

Not surprisingly, the expert-derived growth rates for sockeye salmon contribute the most to 

variance in the damage estimate. This result suggests that investments into biophysical research 

on the effects of Elodea on salmon are warranted to improve the precision of damage estimates.  
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7. CONCLUSION 

Even though the range of potential damages estimated are large, the mean annual damage of 

$159 million suggests that investment in preventing aquatic invasive species from gaining a 

foothold in Alaska is justified.  Considering the attention and investment the invasive species 

threat in the Great Lakes has received in the past decade, the much larger damage estimate 

presented here raises the question as to whether these investments are optimally allocated. The 

results presented here suggest that future invasive species investments are better directed towards 

preventing damage to some of the most productive and intact ecosystems of national and global 

significance, especially as still in their pristine state are rare (Pinsky et al. 2009). With the 

invasive species problem still in its infancy in Alaska, society still has the opportunity to take 

prevention seriously 

Directions for future research should be aimed at first reducing uncertainty associated with 

damage estimate by conducting biophysical research into Elodea’s growth effects on sockeye 

and possible other salmonids and second accounting for Elodea’s landscape-wide distribution 

pathways. The sensitivity analysis of this study clearly showed that the believed distribution of 

annual average growth rates for sockeye salmon in Elodea-infested salmon habitat is the primary 

driver of uncertainty in the damage estimate. Since the study does not account for the landscape-

wide distribution of Elodea into salmon-bearing watersheds, accounting for the primary human 

pathways of long-distance dispersal through floatplane and boat traffic could further refine and 

potentially reduce damage estimates. Similarly, accounting for the natural rate of Elodea collapse 

would have the similar effects.  
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