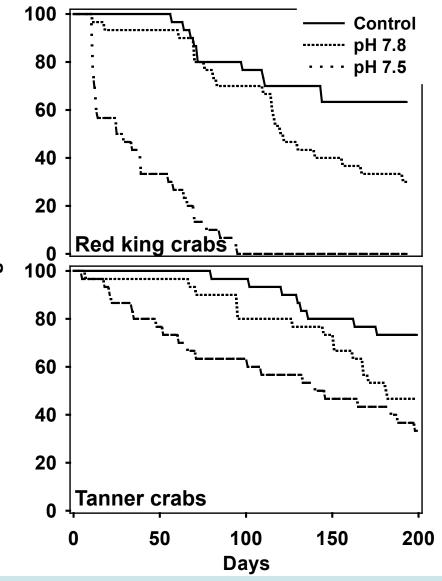
Biological responses to OA among Alaska's fishery resource species

Thomas Hurst, Ph.D. Alaska Fisheries Science Center

Goal: Understand the impacts of Ocean Acidification on Alaska marine species and forecast effects on industries and communities.

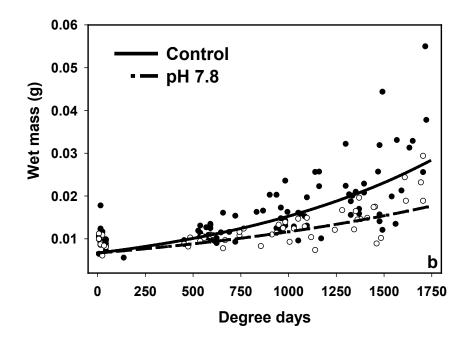

• Species groups

Crabs – work led by Chris Long, AFSC Groundfishes – work lead by Tom Hurst, AFSC Salmon – work at UBC, UW and UAF

- Research gaps
- Regional vulnerability analysis

OA reduces crab survival

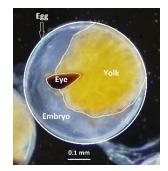
OAA FISHERIES



Decreased survival for both species at both pHs

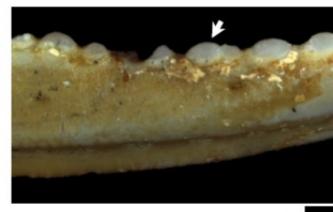
OA reduced red king crab growth

Significant reduction in growth at pH 7.8



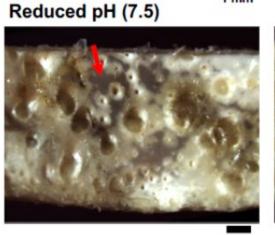
Crab results summary

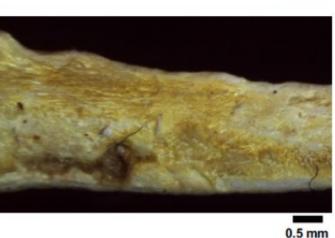
					Feeding		
Species	Life history stage	Growth	Mortality	Respiration	rate	Condition	Development
Red king crab	Embryo		=				Altered
	Larvae		Increased				
	Juvenile	Decreased	Increased	Increased	=	Decreased	=
	Adult						
Blue king crab	Juvenile	Decreased	Increased	Increased	=		=
Golden king crab	Juvenile	Decreased	Increased				
Tanner crab	Embryo		Increased				Altered
	Larvae		Increased			Decreased	
	Juvenile	Decreased	Increased			=	=
	Adult						
Snow crab	Embryo		=				=
	Larvae		=			=	
	Adult						
			Exoskeleton	Hemolymph	Immune	Gene	
Species	Life history stage	Calcification	hardness	рН	system	expression	
Red king crab	Embryo						
	Larvae	Increased				=	
	Juvenile	=	Decreased			Altered	
	Adult	Increased				Altered	
Blue king crab	Juvenile	Increased	Decreased				
Golden king crab	Juvenile						
Tanner crab	Embryo						
	Larvae	Decreased					
	Juvenile	Decreased					
	Juvenile Adult	Decreased Decreased		=	Decreased		
Snow crab				=	Decreased		
Snow crab	Adult			=	Decreased		



OA dissolves crabs' shells

- Crab have shells made of calcium carbonate (shellfish)
- Lower pH can make those shells dissolve or make it hard to make those shells

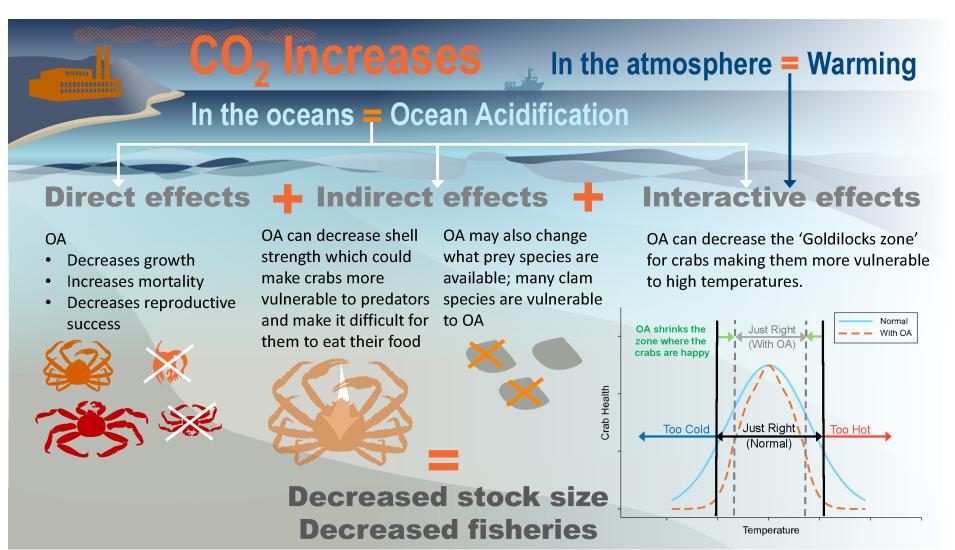



Ambient pH (8.1)

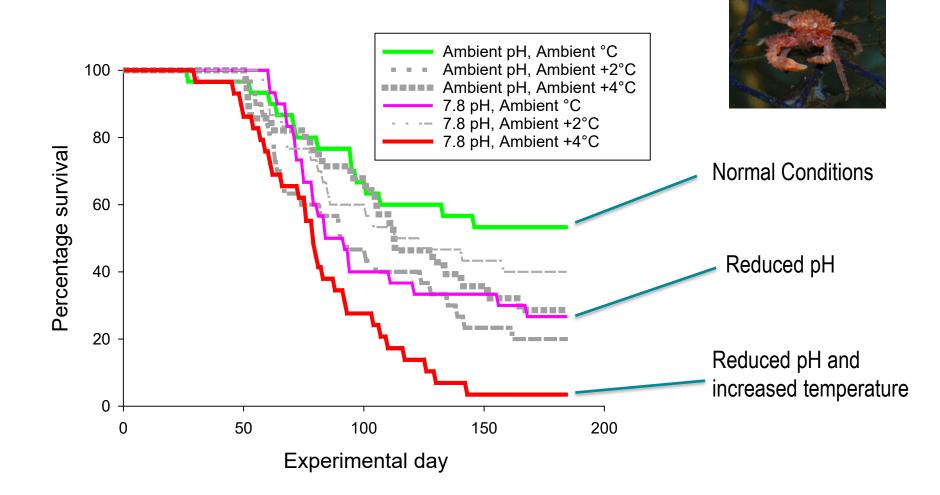
1 mm

0.5 mm

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 6


Crab observations summary

- Red king crab and Tanner crab are more sensitive to OA than snow crab and blue king crab
- Larvae are pretty resistant to OA
- Juveniles are the most sensitive
- Acidification induces a wide range of biological responses that vary among species
- OA will interact with other stressors


Acidification does not act alone.

Infographic credit: Rebecca White and Chris Long

High temperatures can increase sensitivity

OA effects among groundfishes

Least observed impacts No effect on survival to hatch or size at hatch No pH effects on larval or juvenile growth & survival Reduced rates of swim bladder inflation in larvae

Northern rock sole

Some negative effects observed: No effect on hatch success or size at hatch Reduced growth and condition in post-flexion fish Higher larval mortality at low pH

Growth and behavior responses Reduced growth first 2 weeks of life Alteration of photo-taxis behavior

Salmon studies

- Initial study by Ou et al. (2015) found negative effects of high CO₂ on growth of pink salmon in freshwater phase.
- High CO₂ affected the neurobiology and behavior of pink and coho salmon.
- Current work by UAF examining CO₂ and feeding effects on juvenile pink salmon

Ocean-phase juvenile pink salmon experiment

University of Alaska Fairbanks

Preliminary observations indicate that low pH resulted in reduced growth and condition, and increased levels of stress hormones.

Summary of biological responses

- Lots of variation in species sensitivity and biological responses
- Crabs appear most sensitive at the juvenile stage
- Fishes appear most sensitive at the larval stage
- Interaction with other stressors is expected to exacerbate OA sensitivity
- Ongoing efforts to apply sensitivity studies to predict impacts on specific fisheries and communities

Research needs

- Acidification impacts on other components of the food web
 - zooplankton, shrimp, forage species
- Interactions with other stressors
 - temperature, prey changes, harmful algal blooms
- Projections to fishery production and community impacts

Regional Vulnerability Assessment Project

A community-centric approach to evaluating the risks from ocean acidification.

Co-develop models of OA effects, industries, subsistence uses, and aspects of community well-being to guide decision-making at local and regional level.

