MORE THAN A PIPE DREAM

AN ALASKA GRID

HOUSE SPECIAL COMMITTEE ON ENERGY

APRIL 16, 2019

Meera Kohler, President/CEO Alaska Village Electric Cooperative

About Alaska Village Electric Cooperative

A non-profit member-owned electric cooperative Electric service to 58 villages - 32,000 population 38% of Alaska's PCE population

System Information

- 90 full time employees
- 90+ part time employees
- 11,400 services
- 50 power plants
- 170+ diesel generators
- 500+ fuel tanks
- 8.6 million gallons of diesel
- 36 wind turbines serving 20 villages
- Two tug and barge sets

The Cost of Rural Power

- 11,400 Services residential and commercial
- 118 million kWh sales
- \$52 million revenues
- \$28 million Total Fuel Cost
- \$25 million non-fuel cost
- 44¢ Total revenue per kWh
- 397 kWh Average residential usage per month
- 48¢ Residential revenue per kWh
- Power Cost Equalization \$10.7 million,
 - 21% of revenue, 41% of total PCE disbursed

What Alaska Spends on Heat and Power

6

From 2011 Alaska Power Statistics:

Electricity revenue	\$1,024 million	
Gas revenue – Southcentral	\$564 million	
Diesel – Fairbanks area Diesel – Kodiak, Copper Valley, SE <u>Diesel – Rest of state</u>	150 mm gallons 68 mm gallons 163 mm gallons 381 mm gallons	
Diesel value at \$4.00/gallon	\$1,524 million	
Annual cost of electricity/heat	\$3,084 million	
Expenditure in 20 years	\$61.7 billion	

Why an Alaska Grid?

- Large scale, high efficiency gas-fired generation
- HVDC transmission to move power across Alaska
- Lower emissions with large-scale renewables for distant end-users
- Abundant power for
 - North Slope operations
 - o Fairbanks and other Railbelt communities
 - o Remote mines, military and processors
 - Heat and power for rural communities

The Footprint of HVDC is Smaller than AC

China: Three Gorges HVDC v AC

400 MW AC

3,000 MW DC

IN EUROPE

HVDC: CONNECTING THE WORLD

IN NORTH AMERICA

HVDC: CONNECTING THE WORLD

IN CANADA

Manitoba Hydro

Similar dimension/scale
500+ miles
68% of all power
transmitted via HVDC

HVDC:

- **1972 Phase 1** Manitoba Hydro began delivery of 1,620 MW from Nelson River Hydro sites to Winnipeg via a 500 mile HVDC line
- added via a 580 mile long HVDC line
- 2018 Phase 3 850 mile HVDC line additional 2,000 MW to S. Manitoba and USA
- 20% of the HVDC line routes go through areas of discontinuous permafrost. Foundations and maintenance programs were designed to deal precisely these conditions.

IN ASIA

Xiangjiaba-Shanghai

- 1,250+ miles
- 6,400 MW 800 kV
- Commissioned 2010
 2013-2014:
- 27,400 MW
- 4,200 miles 800kV2015:
- 58,000 MW
- 8,700 miles 800+kV

HVDC: CONNECTING THE WORLE

14

2,000 MW Power Plant at the North Slope

- Provide electricity for North Slope activities
- Replace mechanical gas-fired systems with electric
- Provide avenue to integrate Arctic wind power
- Capital Cost: \$2.5 Billion
- Delivered cost of power: \$0.05/kWh

15

HVDC transmission to Fairbanks

- Power for GVEA adequate to provide space heat
- Adequate energy for Fort Knox
- Adequate energy for Livengood mining district
- Capital Cost: \$1.65 Billion
- Delivered cost of power: \$.05 + \$.015 = \$.065/kWh
- \$18/mcf gas at 85% efficiency = \$.072/kWh

16

HVDC transmission to West Coast

- Adequate energy supply for Ambler mining district
- Power for Red Dog mine
- Power for Kotzebue/Nome area (electricity and heat)
- Pathway for West Coast wind power
- Capital Cost: \$900 Million
- Delivered cost of power: \$.065 + \$.107 = \$.172 (40% of capacity) \$.12 (85% of capacity)
- \$4.00 diesel with 85% efficiency for heat = \$.125/kWh

HVDC transmission to Y-K area

- Adequate power for Donlin Gold
- Adequate power for Bethel and surrounding area
- Capital Cost: \$510 million
- Delivered cost of power: \$.065 + \$.058 = \$.123 (40% of capacity) \$0.098 (85% of capacity)

18

HVDC transmission to South-Central

- Adequate power to supplement local generation
- Pathway to move hydropower from Susitna
- Pathway to integrate tidal/geothermal power
- Capital Cost: \$1.2 Billion
- Delivered cost of power: \$.065 + \$.022 = \$.087

COMBINED PROJECT COSTS

19

2GW Power Plant

\$3/MCF gas; 7%/30 year money @ 80% capacity = 14 billion kWh

Current Alaska Sales = 6.5 billion kWh

5GW Power Plant

Phases 1-5 \$6.76B + 3GW increase in capacity \$3.75B

\$10.5B

@ 80% capacity = 35 billion kWh

What Else is Under Consideration?

20

Susitna-Watana Dam	\$6.50B
Susitna Access	\$0.50B
Railbelt Transmission Upgrades	\$1.00B
Fairbanks LNG Trucking	\$0.43B
Bullet Gas Line from NS	\$8.20B

\$16.63B

RECENT UTILITY PROJECTS

21

50MW	\$100M
183MW	\$359M
(200MW)	
180MW	\$250M
90MW	\$150M
120MW	\$225M
(220MW)	
	50MW 183MW (200MW) 180MW 90MW 120MW (220MW)

203MW \$1,084M

Almost no additional electric generation capacity A lot of stranded generation capacity

POSSIBLE UNMET ENERGY NEEDS

22

North Slope Operations 300 MW Gas Turbine Conversion 1000 MW 100 MW **Pipeline** Operations Ambler Mining District 300 MW Red Dog/Nome 100 MW Donlin Creek 180 MW 500 MW Refining/Smelting 100 MW Processors 200 MW Value-Add Server Farm 500 MW 500 MW Electric Heat

Affordable cost of energy is the answer!

3780 MW

HOW MUCH GAS WOULD IT TAKE?

23

North Slope gas reserves are 235 trillion cubic foot (tcf)

•0.8 MW project uses 38 bcf/year - 1.14 tcf in 30 years (0.5%)
•1.7 GW project uses 76 bcf/year - 2.28 tcf in 30 years (1.0%)
•2.5 GW project uses 113 bcf/year - 3.4 tcf in 30 years (1.5%)
•5.0 GW project uses 226 bcf/year - 6.8 tcf in 30 years (2.9%)

We can have our cake and eat it too!

The Benefits of Connecting Alaska

- Reduce the number of power plants
- Consolidated loads improve economics of interconnection.
- Larger loads make renewables like wind or hydro feasible
- A grid allows large scale development of renewables to serve loads across the state

Let's ship "Made in Alaska" not "Pieces of Alaska"

Meera Kohler President and CEO Alaska Village Electric Cooperative (907) 565-5531 mkohler@avec.org