Quintillion Subsea Cable System

The Alaska State Legislature House Committee on Education Chair, Representative Drummond 24 March 2017

Meet Quintillion

- Headquartered in Anchorage, Alaska
- Building a multi-phase fiber optic cable network in and around Alaska with plans to connect to Asia, Arctic Canada and Europe
- Privately funded includes select Alaska investors
- Delivering 50 to 90% price reductions for wholesale dedicated capacity compared to current backhaul options
- Private operator selling wholesale capacity to telecom service providers capacity on Quintillion's network is available to all service providers
- Bringing high speed internet and true broadband to the North American Arctic in 2017

Planned Network - Phased Approach

Alaska Scheduled In-service 2017

COST OF SERVICE

ARCTIC TELECOMMUNICATIONS

Backhaul technology drives cost of service

Backhaul Technology – the connection from a community to the internet

Satellite – high cost; limited capacity

- Substantial operation and maintenance costs on ground stations
- Large capital outlay
- Susceptible to environmental outages: weather, solar flares, etc.
- On a per Mbps cost basis, cost is very high and capacity limited < 2,000 Mbps

Microwave – high cost; limited capacity

- Substantial operation and maintenance costs on towers, power plants and radios
- Expensive to construct in remote environments
- Susceptible to environmental outages: weather, solar flares, etc.
- Capacity is limited and ability to upgrade is limited 2,000 to 10,000 Mbps on most systems

• Fiber Optic Cable – low cost; virtually unlimited capacity

- Cost of construction is coming down as tools advance
- Lower cost of operation and maintenance no routine subsea maintenance, no remote facilities – all community based
- Virtually unlimited capacity 10,000,000 Mbps per fiber pair with ability to triple capacity by changing equipment in community-based landing site

Benefits of Fiber to Rural Communities

- **EDUCATION:** Supports Digital Learning agenda; improves education and job training while lowering cost of delivery
- HEALTH CARE: Supports Tele-medicine solutions; electronic health records; remote diagnostic and specialist consultations
- GOVERNMENT: Improves efficient delivery of government services
- **ECONOMIC DEVELOPMENT:** Enables business opportunities dependent on high-speed communications and true online/remote work
- **EMERGENCY RESPONSE:** Allows real-time monitoring and management of resource development industries (oil & gas and mining) and improves Search and Rescue capabilities
- PUBLIC SAFETY: Improves capabilities for effective community public safety and security services
- NATIONAL STRATEGY: Reliable communications is essential to all three areas identified in the President's National Strategy for the Arctic Region, published 2013
 - Advance United States Security Interests
 - Pursue Responsible Arctic Region Stewardship
 - Strengthen International Cooperation

How *Does* One Build Arctic Subsea Cables?

DESIGN & BUILD

Logical & Feasible Design

- Prior efforts by other companies failed to overcome the unique complexities of building in the Arctic
- Quintillion's plan will deliver the system in logical phases anchored in Alaska
- Have worked for the past four+ years to design a system that is both logical and feasible

PHASE 1 - ALASKA

- Nome to Prudhoe Bay (Oliktok Point) with branches to Kotzebue, Point Hope, Wainwright and Barrow
- New terrestrial fiber from Prudhoe Bay to Fairbanks interconnecting with existing cables to the US Pacific Northwest
- Construction underway

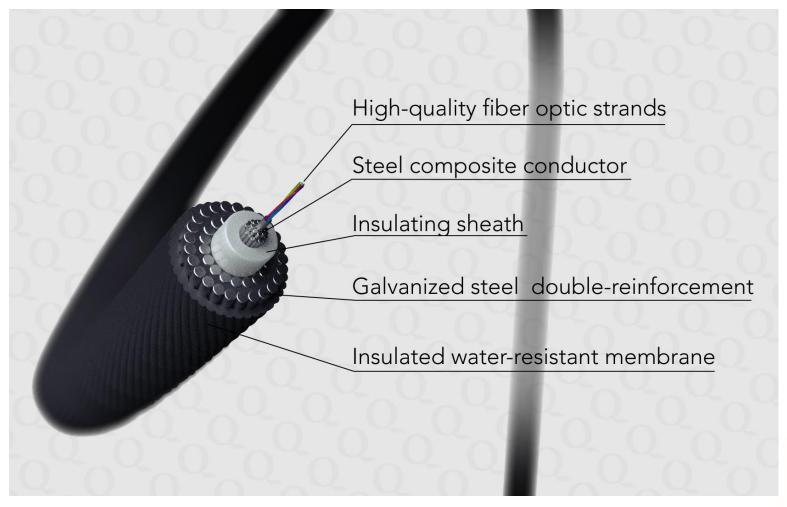
Phase 1 scheduled in-service 2017

PHASE 2 – ASIA

- Plans to extend the system at the Nome branching west to Asia
- · Options for additional branches into Alaska
- Provides diverse and redundant communication routes

PHASE 3 – CANADA-WESTERN EUROPE

- Designed to extend subsea fiber east from Prudhoe Bay, Alaska through the Lower Northwest Passage to Europe
- Planned spurs into Arctic communities in Northern Canada
- Shorter route between Europe and Asia
- Provides diversity for Europe to Asia routes



Building an Arctic-Resilient System: Phase 1-AK

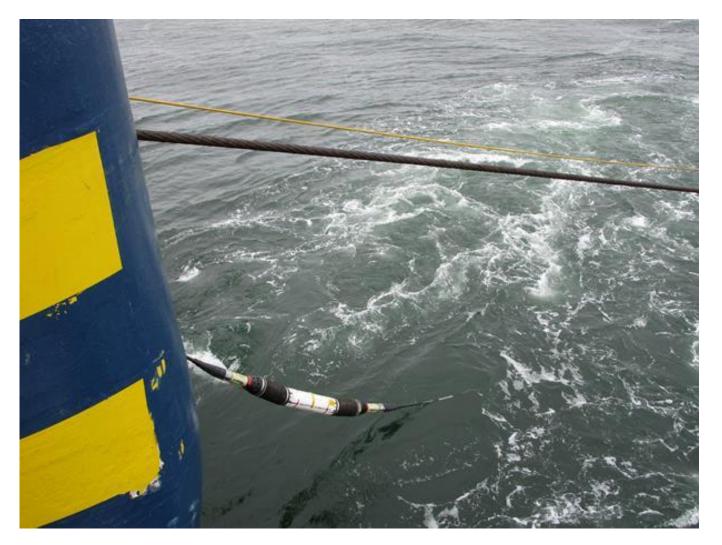
- Alcatel-Lucent Submarine: Turn-key contractor for design, build and construction of subsea system
- New Horizons Telecom, Inc.: Design and build the Dalton Highway terrestrial system and cable landing sites for subsea system
- Cable constructed of high quality glass, wrapped in protective coating and armoring, sometimes double armored, and water-resistant membrane
- Resilient network design: double armor and bury below ice gouge risk
- 25+ year design-life many older systems are realizing longer system life
- 30 terabit per second system can increase capacity with change of equipment in cable landing station
- HDD boring at each cable landing protects cable and minimizes shoreline disruption
- Four marine spreads operating in parallel to install during Arctic open water season
- Custom maintenance program to effect repair, if necessary

Resilient Fiber Design & Installation

Trailblazers bringing fiber to the Arctic

- Four+ years to develop Phase 1-Alaska
- 3 years Permitting and approvals over 275 permits, approval, easements, etc.
- 3 years analyzing and planning for risk mitigation external aggression; logistics, etc
- 2 seasons of Marine Surveys geotechnical and geophysical studies
- 2 years to complete horizontal drilling for the six shore landings
- 2 years to complete the terrestrial cable to Fairbanks
- 2 year to build the cable, repeaters, branching units and terminal equipment
- 2 Arctic summers to install Phase 1 subsea cable system
 - Bury the cable deep to avoid external risks
 - Work around marine mammal migrations
 - Work around traditional activities including subsistence hunting

System Resilience – design & build considerations


- Human activities present greatest risk to subsea cables, which are relatively low in the Arctic
- Ice gouging presents greatest risk in Arctic - Quintillion's cable burial design will install the cable below the <u>ice gouge risk</u> assessed by ice study experts
- Installed shore landings using deep bores and steel conduits to protect from shallow water risks
- Dual redundant network equipment insures network operation from equipment failure

Typical Risks

Risk of Service- Impacting Cable Breaks	Percentage of Total Failures	Quintillion's Mitigation Plan
Fishing	42%	Construct outside fish trawling region
Anchors	23%	Cable burial
Geological	10%	Construct outside seismic region
Other	12%	Cable burial
Abrasion	6%	ASN has lowest amplifier & repeater failure rates
TOTAL	100%	

Source: SubOptic2016

Repeater Laid off C/V Ile de Brehat

Ile de Sein Deploying Plough off Wainwright

Managing Ice off Wainwright, Alaska

Support Vessel Managing Ice

C/V lle de Sein in Arctic Ice Flow

C/V lle de Brehat off Barrow shore

THANK YOU

WWW.QEXPRESSNET.COM

1-800-673-4394

INFO@QEXPRESSNET.COM

KRISTINA WOOLSTON, VICE PRESIDENT EXTERNAL RELATIONS

KWOOLSTON@QEXPRESSNET.COM