

## Ocean Acidification in Alaska: Ecosystems and Economies

Jessica N. Cross, Ph.D.
National Oceanic and Atmospheric Administration
Pacific Marine Environmental Laboratory
Jessica.Cross@noaa.gov



Alaska State Legislature House Resources Committee February 2017

### **Global CO<sub>2</sub> Levels Continue to Rise**



### **Global CO<sub>2</sub> Levels Continue to Rise**





#### **22 TONS EVERY DAY**

**1/3** OF ALL CO<sub>2</sub> RELEASED IS ABSORBED BY THE OCEAN.



ALASKAN COASTAL WATERS ARE NATURALLY HIGH IN CO<sub>2</sub>







Ocean Acidification is **already** causing carbonate minerals to dissolve in the Bering Sea.





Ocean Acidification is **already** causing carbonate minerals to dissolve in the Bering Sea.



Population Distributions Courtesy R. Foy National Marine Fisheries Service Alaska Fisheries Science Center



## Ocean Acidification Impacts Shellfish...







### Ocean Acidification Impacts Fish...



## ...and Ocean Acidification impacts food sources



#### **Pteropods: The OA Poster Child**

- Low pH disrupts shell building
- In-situ dissolution already observed
- Important food web resource









## Ocean Acidification Risk Assessment Alaska Fishery Sector





Ocean acidification risk assessment for Alaska's fishery sector



J.T. Mathis a,b,\*,1, S.R. Cooley c,1,2, N. Lucey d, S. Colt e, J. Ekstrom f, T. Hurst g,h, C. Hauri i, W. Evans a,b, J.N. Cross a,b, R.A. Feely a

# Ocean Acidification is likely to get worse





## OA does not happen in a vacuum



## OA does not happen in a vacuum



## OA does not happen in a vacuum



## If Organisms Cannot Adapt...

# Bristol Bay Red King Crab Recruitment failure could lead to fishery collapse



CHANG K. SEUNG et al, Clim. Change Econ. 06, 1550017 (2015) [35 pages] DOI: http://dx.doi.org/10.1142/S2010007815500177

ECONOMIC IMPACTS OF CHANGES IN AN ALASKA CRAB FISHERY FROM OCEAN ACIDIFICATION



# Building Adaptive Capacity and Community Resilience

Resilience is the capacity of a system to continually change and adapt, yet remain within critical thresholds.



## Risk Mitigation Strategies



Diversify economies in high and moderate risk regions

Provide job training and educational opportunities

Increase access to alternative protein sources

Reduce other environmental stressors



## Alaska Ocean Acidification Network

#### Connecting Scientists and Stakeholders

Network Coordinator: Darcy Dugan, AOOS

- Alex Harper (NOAA OA Program)
- Bob Foy (NOAA AFSC)
- Davin Holen (AK Center for Climate Assessment & Policy)
- Gary Freitag (AK Sea Grant Ketchikan)
- Hannah Heimbuch (AK Marine Conservation Council)
- Jeff Hetrick (Alutiiq Pride Shellfish Hatchery)
- John Kiser (AK Shellfish Growers Assoc.)
- Melissa Good (AK Sea Grant Unalaska)
- Mia Heavener (Alaska Native Tribal Health Consortium)
- Mike Miller (Sitka Tribe/IPCoMM)
- Molly McCammon (AOOS)
- Natalie Monacci and Jeremy Mathis (UAF OA Research Center)
- Ruth Christiansen and Mark Gleason (Alaska Bering Sea Crabbers)







## Alaska Cares!























Ocean Acidification Research Center







# OA awareness in Alaska is about three times higher than the rest of the US.



#### **GLACIER TO GULF:**

Multi-platform Ocean Acidification Monitoring in Prince William Sound



Department of Commerce Silver Medal for Exceptional Service, 2014















In 2014, this award-winning study used six types of technology to track glacial melt signals for five months, finding strong ocean acidification events near glacial plumes.





#### **Your OA Researchers**



#### Leadership



Libby.Jewett@noaa.gov



Mike.Sigler@noaa.gov

#### Ocean Chemistry



Jeremy.Mathis @noaa.gov



Jessica.Cross @noaa.gov

#### Species Response



Thomas.Hurst @noaa.gov



Robert.Foy @noaa.gov



Bob.Stone @noaa.gov

#### Economic Modeling



Michael.Dalton @noaa.gov

## **Looking Forward**

# Innovation and Technology Development



#### Summary



- Ocean Acidification is already impacting Alaskan coastal areas important to commercial and subsistence fisheries.
- Coastal communities in Southeast and Southwest Alaska face the highest risk from ocean acidification.
- As human CO<sub>2</sub> emissions rise, Ocean Acidification will get worse.
- Risk Mitigation and Adaptation Strategies:
  - Diversify the economies in high and moderate risk regions
  - Provide job training and educational opportunities
  - Increase access to alternative sources of protein
  - Reduce other environmental stressors
  - REDUCE CO<sub>2</sub> EMISSIONS Everything else is just buying time.



## Ocean Acidification in Alaska: Ecosystems and Economies

Jessica N. Cross, Ph.D. NOAA/PMEL Jessica.Cross@noaa.gov



Alaska State Legislature House Resources Committee February 2017