

TRANSMISSION 101 LUNCH & LEARN

Daniel Kline Feb 18th, 2015

AMERICA'S TRANSMISSION SYSTEM

"Greatest engineering achievement of the 20th century1"

¹National Academy of Engineering

COMPONENTS OF THE ELECTRICAL SYSTEM

-

9

COMPONENTS OF THE GRID

Source: www.nerc.com

Xcel Energy®

 The "grid" can be broken down into four main components: Generation, Transmission, Distribution, and Load Customers

COMPONENTS OF THE GRID: GENERATION

- Creates electric energy
- Fueled by various sources of energy (fossil fuels, wind, hydro, etc.)

COMPONENTS OF THE GRID: TRANSMISSION

 Higher voltage wires are used to move power relatively long distances from generators to load with lower losses

Xcel Energy®

- Networked (looped) transmission systems are used to enhance reliability by linking many different generators and loads
- Transmission allows the dispatch of generation over a wider geographic area for both economic and reliability purposes

COMPONENTS OF THE GRID: DISTRIBUTION

 Primary purpose is to serve loads (customers) -your house is connected to a distribution system

 Generally radial (non-networked) in nature

 Not used for interstate commerce or long distance power delivery

COMPONENTS OF THE GRID: LOAD

TECHNICAL OVERVIEW

-

MAXXFORCE

TECHNICAL OVERVIEW DEFINITIONS

VOLTAGE	 Electrical "pressure" is measured in volts For power systems we typically measure in 1000's of volts or kilovolts (kV)
CURRENT	 Movement of charge (electrons) through a conductor Measured in Amperes (A)
FREQUENCY	 Measured in Hertz (Hz) North America is 60 Hz, while majority of countries use 50Hz
POWER	 Rate at which electricity does work Measured in watts or more typically kilowatts (kW) or megawatts (MW)
ENERGY	 Amount of work that can be done by electricity Measured in kilowatt-hours (kWh) or megawatt-hours (MWh)

TECHNICAL OVERVIEW ALTERNATING VS. DIRECT CURRENT

- Alternating Current (AC)
 - Magnitude of current and voltage varies with time
 - Most of grid is AC
- Direct Current (DC)
 - Magnitude of current and voltage is constant
 - Applications of high voltage direct current (HVDC) exists in U.S. and elsewhere

Xcel Energy®

BENEFITS OF A UNIFIED TRANSMISSION SYSTEM

NON-REGIONAL TRANSMISSION LIMITATIONS TO LOCAL SYSTEMS

Utility C Generator

Utility C

Load

- Must build generation near loads
- Limited fuel diversity
- Typically required to install smaller, less efficient generation

 Results in over capacity of generation (no economies of scale)

REGIONAL TRANSMISSION BENEFITS OF A REGIONAL SYSTEM

- Generation can be built in areas removed from the loads
- Larger and more efficient generators can be built
- Ability to send power to remote areas with lower losses
- More loads can be served more reliably and economically from the unified grid

AFFORDABLE & RELIABLE ELECTRICITY DRIVERS OF ECONOMIC GROWTH

Lower electricity prices and reliability drive economic growth...

Xcel Energy®

...which regional transmission and economic dispatch of generation can facilitate.

HOW TO IMPROVE RELIABILITY REGIONAL PLANNING

 Regional planning takes into account the use of transmission to enable each utility to serve the other utilities load, even with the loss of one transmission element (N-1 capable)

TRANSMISSION ENABLES COST SAVINGS BASIC ECONOMIC DISPATCH EXAMPLE

Without Economic Dispatch With Economic Dispatch Utility A Utility A Utility A Utility A Generato Load Generator Load Utility C Utility C Generator Generator 777 Utility B Utility B Generator Generator Utility C Utility C Load Utility B Load Utility B Load Load Generation Dispatched Generation Customer Customer Dispatched \$/MW Total \$ \$/MW Total \$ Generation Capacity MW Load Generation Load Utility A 20 MW 25 MW 20 MW \$90 \$1,800 Utility A 20 MW 25 MW \$90 \$0 Utility **B** \$70 \$700 Utility **B** 10 MW 15 MW \$70 \$700 10 MW 15 MW 10 MW 10 MW Utility C 30 MW \$60 \$600 Utility C 30 MW \$1,800 10 MW 10 MW 10 MW 30 MW \$60

\$3,100

Total

40 MW

Each utility and their customers have access to only their generation

70 MW

40 MW

40 MW

Each utility and their customers have access to the lowest cost generation

40 MW

\$2,500

70 MW

Total

THANK YOU

