Shale Oil Development on the North Slope

House Resources Committee William C. Barron Nov. 1, 2011

Task Force Update

- Develop SOA multi-agency team, represented by DNR, DEC, AOGCC, ADF&G, DOT, Governor's Office
- SOA is well positioned to manage shale resource play based on current statutes and regulations
- Total well count for shale could be about the same as current total NS well count, only done in a third of the time
 - Pace and magnitude of permitting and development could be significant

Resource Play Inter-Agency Task Force

• Why the Task Force?

- Alaska has never had shale resource development
- Interest in Alaska shale has been very strong since last lease sale
- Successful exploration could lead to immediate development
 - The true viability of the Great Bear Petroleum acreage is not known until exploration occurs
 - Planned exploration could occur in the next year
- The State wants to be ready

Existing Management for Shale Resource Development

State agencies currently regulate the following:

- Well design and construction
- Gas flaring and venting
- Water discharge and storage
- Air quality monitoring
- Ice road and ice pad construction
- Plans of Operation and Plans of Development
- Habitat and wildlife management
- Environmental safeguards including spill prevention and control

Future work

- Water Management Source, Recycle, Disposal
- Hydraulic Fracturing Chemical Disclosure -FracFocus.org
- Infrastructure common facilities such as roads, gathering lines, power, transit line to TAPS, etc.
- Gas Disposition: Use, Vent, Flare

Source: U.S. Energy Information Administration based on data from various published studies. Canada and Mexico plays from ARI. Updated: May 9, 2011

Well Facts

• Alaskan analog is thought to be Eagle Ford Shale, TX

	Bakken	Eagle Ford	Shublik	L. Kingak	Hue/GRZ
Total Organic Carbon	10% avg	2-7%	2-3% avg	5% avg	3% avg
Main Kerogen Types	I/II (<u>oil</u>)	I/II (<u>oil</u>)	I/II-S (<u>oil</u>)	II/III (oil-gas)	II/III (oil-gas)
Oil Gravity, °API	42°	30-50°	24-45°	40°	38°
Thickness	up to 100 ft	50-250 ft	0-600 ft	175-550 ft	100-800 ft
Thermal Maturity	Imm-Oil-Gas	Imm-Oil-Gas	Imm-Oil-Gas	Imm-Oil-Gas	Imm-Oil-Gas
Lithology & Variability	Sh-Slts-Sh	Sh-Slts-Ls	Sh-Slts-Ls	Shale	Sh-Tuff
Brittleness	Yes - Quartz	Yes - Calcite	Yes - Calcite	No ?	No ?
Natural Fractures	Yes	Locally	some zones	ç	?
Overpressure	Yes	Locally	?	Probably	Locally

Well Facts

• Exhibit rapid decline with multi-year 'flat tail'

Whiting Petroleum

Well Facts

- Well drainage is limited and well to well pressure communication doesn't exist
- Requires a high number of horizontal multistage hydraulic fractured wells to maintain production and economic feasibility

Hydraulic Fracturing

- First 'frac' in ~1903; first commercial application 1940's
- Technology routinely used throughout the industry and in Alaska to increase and restore well productivity
- 25% of wells in Alaska have been hydraulically fractured
- Per AOGCC records, earliest well in Alaska was the Gubik #1 well in 1963
- Well Design and Construction primacy of AOGCC
 - Primary focus on safety, water protection

Horizontal Drilling & Hydraulic Fracturing

- Hydraulic fracturing is essential for the production from shale
- Frac fluids are approximately 98% water and sand
- Freshwater aquifers are protected by multiple layers of protective steel casing surrounded by cement; this is administered and enforced under state regulations.
- Deep shale natural gas and oil formations exist many thousands of feet underground.

Graphic courtesy of Chesapeake

Fracturing height

Graphic courtesy of Halliburton

Wrap-up

- Alaska's first shale test expected this winter
- Permitting required for conventional wells applicable for shale development
- SOA current permits sufficient, but pace and load on agencies needs to be addressed
- Planning and management of infrastructure important

