?]hWYb Development Scenarios

9gVtdYhU'C]`'7c"

Escopeta KLU - 1

Gas Development Presentation

- Cook Inlet Background
- Cook Inlet Design Criteria
- Development Options
 - Outrigger Caisson
 - Subsea
 - Two-Deck Platform
 - Three-Deck Platform
- Pipelines
- Economics

KLU #1 Location

Environmental Conditions

- Waterdepth MLLW:
- Tides:
- Surface current*:
- Bottom current:
- Ice thickness*:
- Wave height*:
- Earthquake:
- Temperature air:

- 10.5 feet per second
 5.3 feet per second
 - 34-inch

100 feet

30 feet

- 28 feet
- **API RP2A Zone 4**
- minus 40° F (minimum)
- Temperature water: 28 ° F (minimum)

* One hundred-year occurrence

Field Development Assumptions

If Gas Only

- Gas Wells: 5
- Initial Production Rate: 50 MMCF/d
 If Oil and Gas
- Gas Wells: 5 Oil Wells : 12
- Initial Production Rate:
- 50 MMCF/d and 12,000 BOPD

Development Options

- 1. Outrigger Caisson
- 2. Subsea
- 3. Two-Deck Platform
- 4. Three-Deck Platform

KLU #1

Caisson Platform Development

Outrigger caisson platform

- Six well capability
- Deck with heliport
- Emergency quarters

Pipeline to Tyonek Platform or to shore

- Single 10-inch gas pipeline

Umbilical to Kitchen Lights

- Power, methanol and controls

Self-installing outrigger caisson platform concept for six wells

Escopeta KLU - 8

Cross-Section of Platform Osprey Leg

Kitchen Lights caisson will be identical to Cook Inlet platform legs

Fabrication & Transportation

Fabricate caisson structure

- Anchorage
- Vancouver, Washington
- SF Bay area
- Tow caisson to Cook Inlet

Installation Procedure

After upending the caisson is set on bottom and jack-up drilling unit moves onto location

Escopeta KLU - 12

Assuming the well is successful the jack-up unit is used to drive piles and install the deck.

Annulus of caisson is filled with grout

Escopeta KLU - 13

Outrigger Caisson Platform

Advantages

- No derrick barge needed for installation
- Minimum cost
- Short timeline to production
- Disadvantages
 - Has not been done in Cook Inlet
 - Jack-up needed for well intervention (summer)

Development Options

- 1. Outrigger Caisson
- 2. Subsea
- 3. Two-Deck Platform
- 4. Three-Deck Platform

Kitchen Subsea Development

Subsea Wells

- Individual wells with flowlines to subsea manifold, or,
- Six well template
- Pipelines to Tyonek Platform or to East Forelands Prod. Facility

- Dual pipelines (for pigging)

Umbilical to Kitchen Lights

- Power, methanol and controls

Multiple Individual Wells

Multiple subsea wells schematic

Individual Subsea Well Completions

Subsea hookup performed by divers and/or guideline system

belmar 3/12/08

Wellhead Example

Escopeta KLU - 19

Tree and Manifold Layout

Six Well Subsea Template

Six-Well Tempalte Example

Template Example Schematic

Subsea Development

Advantages

- No derrick barge needed for installation
- Short timeline to production

Disadvantages

- Has not been done in Cook Inlet
- Complicated hook-up using divers
- Jack-up needed for well intervention (summer)

Development Options

- 1. Outrigger Caisson
- 2. Subsea
- 3. Two-Deck Platform
- 4. Three-Deck Platform

belmar 3/12/08

Kitchen Two-Deck Development

Platform

- 28-well capacity
- Pipelines to East Forelands Prod. Fac.
 - Wet oil and gas pipelines

Water Injection Pipeline from EFPF

- Produced water and make-up water
- Umbilical cable from EFPF

- Power, methanol and controls

Kitchen Application

Osprey Concept Limitation

Tower floatation requirement

Deeper Water Concept

- Columns only needed in tidal (ice) zone
- Different installation method

"Deep" Water Two-Deck Platform

belmar 3/12/08

Two-Deck Platform

Advantages

No derrick barge needed for installation

Disadvantages

- Has not been done in this water depth in Cook Inlet
- No space for production facilities
- Cost

Development Options

- 1. Outrigger Caisson
- 2. Subsea
- 3. Two-Deck Platform
- 4. Three-Deck Platform

Kitchen Three-Deck Development

Platform

- 32-well capacity
- Pipelines to East Forelands Prod. Fac.
 - Clean oil and treated gas pipelines
- Umbilical cable from EFPF
 - Power, methanol and controls

Three-Deck Cook Inlet Platform

- Platform "C"
- Installed 1967
- 68 ft MLLW
- 32 well capacity
- Leg diameter 15.5 ft
- Tower 1,450 ton
- Deck 2,000 ton
- Piling 2,200 ton

Upending, April 1967

Escopeta KLU - 34

Installing Decks

belmar 3/12/08

Three-Deck Cook Inlet platform

Advantages

- Proven design
- Design adaptable to size requirements
- Space for production and water injection equipment
- Disadvantages
 - Requires derrick barge for installation
 - Expensive

Gas Development Pipeline(s)

Gas pipeline, 10-inch, from Kitchen Lights to:

- Tyonek platform (about 12 miles), or to
- East Forelands Production Facility (about 15 miles)
- Anticipated production 50 MMCF per day
- Dual and looped pipelines are needed for the subsea case to provide pigging capability

Umbilical to Kitchen Lights Unit

- Power
- Methanol
- Controls

Gas & Oil Development Pipelines

- Gas and oil pipelines, 10 and 8-inch, from Kitchen to:
 - New Shore Facility (about 8 miles), or to
 - East Forelands Production Facility (about 15 miles)
 - Anticipated production 50 MMCF/d and 12,000 BOPD
 - Dual and looped pipelines are needed for the subsea case to provide pigging capability

Umbilical to Kitchen Lights

- Power
- Methanol
- Controls

Gas Pipeline Route Options

In this option Kitchen gas will be transported to the Tyonek Platform or the EFPF

Umbilical cable is routed to the Kitchen Lights

Escopeta KLU - 39

Capital Costs (based on five gas wells and pipeline option 2)

Development Option	Capital Cost (includes wells, structure, pipelines and facilities) \$ Millions
Outrigger Caisson	134
Subsea Template	173
Two-Deck Platform	168
Three-Deck Platform	210

Capital Costs (based on five gas and twelve oil wells)

Development Option	Capital Cost (includes wells, structure, pipelines and facilities) \$ Millions
Outrigger Caisson	NA
Subsea Template	NA
Two-Deck Platform	422
Three-Deck Platform	426

Kitchen Development Timing

belmar 3/12/08

KLU - 43