Source-Reservoired Oil Resources Alaskan North Slope

Paul L. Decker, Petroleum Geologist Alaska Department of Natural Resources, Division of Oil and Gas March, 2011

Unconventional resources

Distinguished from <u>conventional resources</u> by

Iower geologic risk... hydrocarbons are almost certainly present everywhere within the play fairway

BUT

higher engineering risk... not sure the resource will be recoverable everywhere (massive stimulations must succeed)

Unconventional terminology

Some terms are more specific than others

- Resource plays
- Continuous accumulations
- Sasin-centered accumulations
- Technology reservoirs
- Tight oil / gas
- Shale gas / shale oil (*≠* oil shale)
- Source-reservoired oil / gas

✓ Source = Reservoir = Trap

North Slope Region

North Slope Petroleum Systems

3 prolific source rock intervals

Modified by Alaska Division of Oil and Gas staff from Ken Bird and David Houseknecht (U.S. Geological Survey), personal communication, 2002

Central North Slope Seismic Transect Public Seismic Line ARCO 80-07& 80-06

West

Total length ~120 miles

- GRZ-Hue Sh at ~8,000 13,000 ft depth
- Shublik + Lower Kingak at ~10,000 ft depth

East

Key Geologic Factors -- Shale Resource Plays

Organic Geochemistry

- Total Organic Carbon content (richness)
- □ Hydrogen Index (oil-prone, gas-prone, or inert kerogen types)
- □ Oil properties (gravity, in-situ viscosity, wax & asphaltene content, etc.)

• Thermal and Tectonic History

- □ Thermal maturity (immature \rightarrow oil window \rightarrow gas window \rightarrow supermature)
- Stress-strain history (# of phases of natural fracturing, etc.)
- Current stress regime (determines orientation of artificial fractures and whether natural fractures are propped open)

O Petrophysics

- □ Porosity (void space between grains, within grains, and in fractures)
- Permeability (how connected are pore spaces?)
- □ Relative Permeability (oil, gas, water which flows more readily?)

Geomechanics -- Is the rock brittle enough to create and sustain fractures?

- Cement content and types (carbonate, silica, sulfides, etc.)
- Grain content and types (silt, sand, fossil debris, etc.)
- Layering (thickness and mechanical contrast)

Close Well Spacing, Many Pads

70 acres total surface impact (14 pads, 5 acres each) → 17,920 acres of subsurface development (2 mile-long laterals on each side of road times 7 miles length times 640 acres/mi²)

(courtesy Lynn Helms NDIC, DMR, 2011)

Close Well Spacing, Many Pads

Infrastructure-intensive development

- Bakken Shale
- Eagle Ford Shale
- North Slope ?

640 acres/well (Sanish & Parshall Fields) 125-140 acres/well (EOG plans) 120-160 acres/well (Great Bear estimates)

Frac FAQs

How do they work?

Fluid (water + sand + additives for gelling and gel-breaking, etc.) is pumped into an isolated part of the borehole under increasing pressure. When the fluid pressure exceeds the rock strength, the formation fractures and the sand-rich fluid shoots out into the growing cracks. The sand props the fractures open after the frac fluid flows back into the wellbore.

How much water do they use?

Frac jobs for horizontal producers in L48 shale plays consume 1 to 5.5 million gallons of water (and millions of pounds of sand) per well, depending on rock properties, number of stages pumped, etc.

What are the environmental risks?

Contamination of fresh water aquifers with hydrocarbons and/or frac fluids can occur where the hydrocarbon target and aquifer are not sufficiently separated. **THIS SHOULD BE AVOIDABLE!**

Frac Jobs

Where are the fractures and how far do they extend?

Microseismic map of 9-stage hydraulically fractured horizontal well (Bello, 2009)

Single well flow rate over time

One producer's average production profile for Bakken Formation production wells – North Dakota

⁽Whiting Petroleum, 2011)

Texas Analogue (?)

Upper Cretaceous Eagle Ford Shale

North Dakota Analogue (?)

Devonian-Mississippian Bakken Fm – First 60-90 day oil rates

Bakken Well Economics and Production

North Dakota Industrial Commission, Department of Mineral Resources

- Well Cost, Horizontal Producer
- Operating Cost, Monthly
- Royalty Rate
- Average Initial Production Rate
- Breakeven IP Oil Rate
- Breakeven Reserves per well
- Breakeven Reserves Success

\$6.1 million (47 jobs) < \$7,000 (1 job) 16.7% 955 BOPD 235 BOPD 183,000 bbl 83%

(courtesy Lynn Helms NDIC, DMR, 2011)

J-2 > May M Mars lower Kingak Fm SAG_R Sag River Em ŠHŬĚ Interbedded shale Zone A & limestone, silty-Shublik muddy, SHUBB Zone B Fm phosphatic, pyritic SHUBC Zone C (up to 600 ft thick) SHUBD Zone D PSU Sadlerochit Group **IVISHAK**

Shublik Formation

Variability in outcrop and well logs

Rock Flour 1

Shublik Formation

Well logs and zonal correlations

(Decker, unpublished data, 2011)

Lower Kingak Formation

 $\Delta \log {\rm R}$ source rock screening

Inigok 1

Bush Fed 1

Itkillik River 1

Hue Shale/GRZ

Correlations and log-based Total Organic Content estimates

(Decker, unpublished data, 2009)

Shublik and Lower Kingak Formations Thermal Maturity Zone

(mature area after Peters and others, 2006)

Hue Shale/GRZ

Thermal Maturity Zone

(mature area after Peters and others, 2006)

Comparison

Source rock characteristics

	Bakken	Eagle Ford	Shublik	L. Kingak	Hue/GRZ
Total Organic Carbon	10% avg	2-7%	2.4% avg	5% avg	3% avg
Main Kerogen Types	I/II (<u>oil</u>)	I/II (<u>oil</u>)	I/II-S (<u>oil</u>)	II/III (oil-gas)	II/III (oil-gas)
Oil Gravity, °API	42°	30-50°	24°	40°	38°
Thickness	up to 100 ft	50-250 ft	0-600 ft	175-550 ft	100-800 ft
Thermal Maturity	Imm-Oil-Gas	Imm-Oil-Gas	Imm-Oil-Gas	Imm-Oil-Gas	Imm-Oil-Gas
		sh Slta La	sh she i s	Shala	ch Tuff
	511-5115-511	511-5115-115	511-5115-115	Shale	SII-TUIT
Brittleness	Yes - Quartz	Yes - Calcite	Yes - Calcite	No ?	No ?
Natural Fractures	Yes	Locally	some zones	?	?
Overpressure	Yes	Locally	?	Probably	Locally

(compiled from various sources, Decker, 2011)

Summary

- Many variables impact productivity of source-reservoired oil and gas
 - Organic geochemistry
 - Thermal and tectonic history
 - Petrophysics
 - Geomechanics
 - Drilling and completion practices
- Development of North Slope shale oil will likely depend on
 - Successful exploration drilling, data gathering to establish geological favorability
 - Successful production pilot project(s)
 - Lowering drilling and operating costs
 - All-season roads for year-round surface access to new areas
 - More hydraulic frac crews
 - Sufficient water supplies for frac make-up fluid
 - Factual understanding and operator transparency regarding frac practices