



### **Presentation Agenda**

- Introduction
- Overview
- Gas Treatment Plant (Roberto Reichard, VP GTP)
- Mainline (Kris Fuhr, VP Mainline)
- Commercial Offer (Scott Jepsen, VP Business Services)
- Summary



### Denali Open Season Plan

- Open season plan approved by FERC
- Open season to begin July 6 and conclude on October 4, 2010
- Denali seeking binding agreements
- High quality design and project execution plan
  - Over \$140 million and 670,000 man-hours invested by Denali since 2008
  - Decades of arctic, mega-project, pipeline experience
  - World-class engineering firms (Fluor/WorleyParsons, Bechtel, CH2MHILL)
  - Field data to support engineering efforts
  - Supported by hundreds of millions of dollars of historical studies
- Enormous undertaking with significant risk
- Competitive commercial offer that recognizes project risks

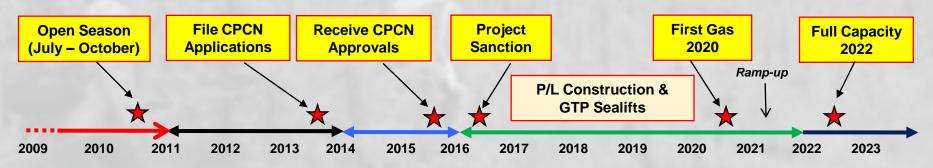


### **Project Description**

- Designed to deliver 4.5 BCFD to North America
- Planning 6 delivery points in Alaska and 4 in Canada
- Gas Treatment Plant (GTP)
  - Gas treating
  - Compression and chilling
- North Slope Transmission Lines
  - Prudhoe to GTP
  - Point Thomson to GTP
- Mainline
  - Prudhoe Bay to AK/Canada border (730 miles)
  - AK/Canada border to Blueberry Hill, Alberta (1020 miles)
  - Multiple options for shippers at Alberta terminus








- High quality Class 4\* cost estimate \$35 billion
- Estimated rate GTP to Alberta \$2.67/MMBtu (excluding fuel)

### **Cost and Rate Summary**

|                  | GTP  | Alaska<br>Mainline | Canada Mainline | Total |
|------------------|------|--------------------|-----------------|-------|
| Cost, \$billions | 12.2 | 10.4               | 12.5            | 35    |
| Rate, \$/MMBtu   | 0.90 | 0.80               | 0.97            | 2.67  |

• Projected first gas in 2020



\* Association for the Advancement of Cost Engineering International

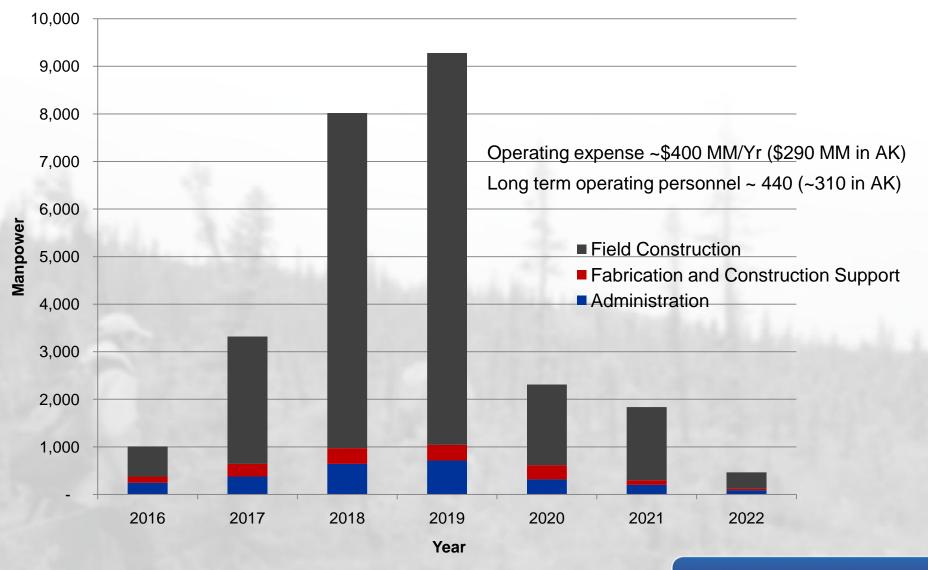


# Highly Qualified Team

- Leveraged 30 years of historical work
- Experienced core team
  - Decades of projects and engineering experience
  - North Slope, arctic, global frontier mega-projects
- World-class capabilities
  - Management systems, tools and people
  - Pipeline, gas treating and processing technologies



- Experienced and highly regarded contractors
  - Pipeline engineering, pipeline construction, compressor station design, civil, and environmental
  - Geotechnical, GIS, logistics, and regulatory
  - Gas plant engineering and construction, facility modularization, sealift expertise
- Virtually every major project constructed on the North Slope managed and operated by BP or ConocoPhillips



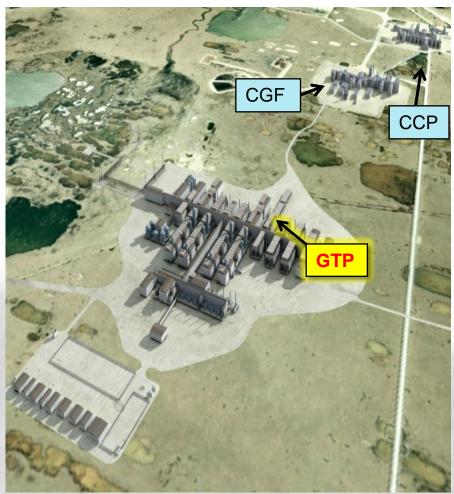

# Denali has dozens of contractor companies supporting its work





## **Construction Manpower (Alaska)**




8

Together. moving. energy.



# Gas Treatment Plant (GTP)

- World-scale modularized plant to condition gas
  - Four processing trains of activated amine to remove CO<sub>2</sub> and H<sub>2</sub>S
  - Dehydration, compression and chilling
  - 4.5 BCFD sales gas into the mainline
  - 0.3 BCFD treated fuel gas for North Slope users
  - CO<sub>2</sub> and H<sub>2</sub>S returned for enhanced oil recovery, sequestration or other uses
  - Expandable to 5.8 BCFD sales gas
- Unbundled service options
  - Gas treating ( $CO_2$  and  $H_2S$  removal)
  - Compression and chilling
  - Treated fuel gas



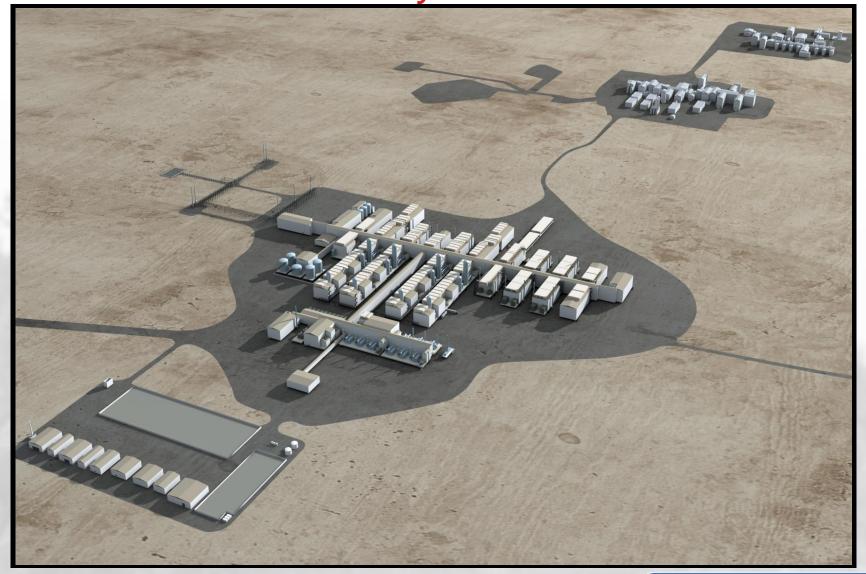


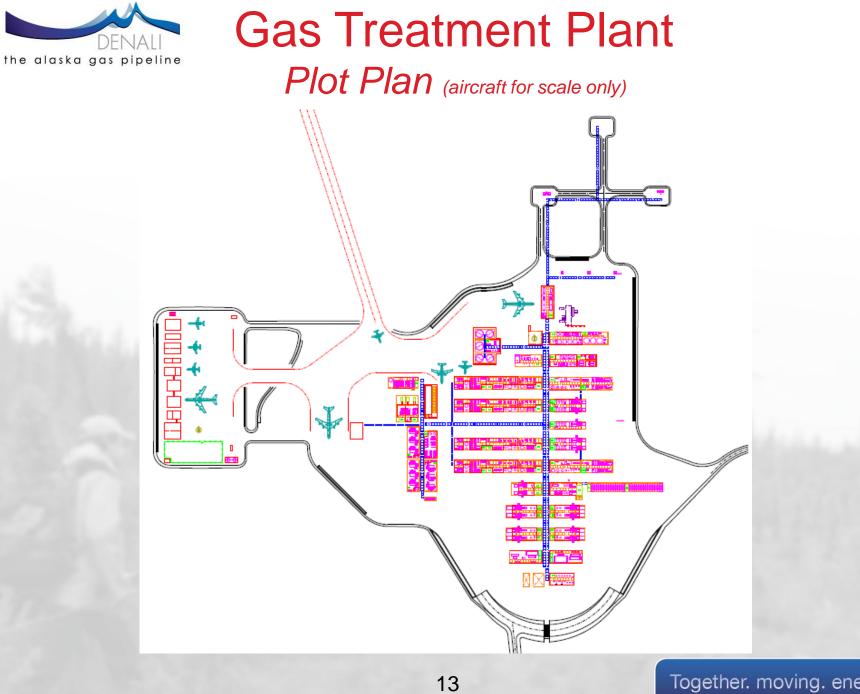
### Gas Treatment Plant State-of-the-Art Design

- Emphasis on safety and environment
  - Latest Inherently Safer Design Norms
  - Energy efficiency
- High reliability and availability
- Meet steady state pipeline demand throughout the year, with ability to repack
- Expandable with additional trains
- Incorporate lessons-learned from arctic as well as other operating gas treatment plants






### Gas Treatment Plant Key Deliverables and Studies


- Key Deliverables
  - Process Flow Diagrams
  - Utility Flow Diagrams
  - Material Selection Diagrams
  - Case for Safety
  - Master Equipment List
  - Electrical Single Lines
  - Telecommunications drawings
  - Site and plot plans
  - Structural/Civil drawings
  - Module plan and elevation drawings
  - Data Sheets for key equipment
  - Design Basis
  - Operations and Maintenance Strategy
  - Cost Estimates (CAPEX and OPEX)
  - Schedule
  - Execution Plan

- Key Studies Completed
  - Central Power energy optimization
  - Alternate AGR technologies
  - Alternate aMDEA configurations
  - Amine regeneration
  - Driver/Driven equipment studies
  - AGRU train size and configuration
  - Utilities make up water
  - Flare sizing study
  - Module size/weight and layout
  - Logistics/Constructability
  - NS & L48 construction
  - HAZID, consequence analysis and QRA
  - Materials of construction
  - Deliverability and RAM
  - Alternate refrigerants
  - Energy optimization studies



### Gas Treatment Plant Fly-Over





#### Together. moving. energy.



### Gas Treatment Plant Construction Sequence

# **Module Loadout Fabrication Site Module Sealift Final Location Transportation to Site Module Offload**

### **Gas Treatment Plant Sealifts - Gulf Coast to Prudhoe Bay**





### Gas Treatment Plant The Largest of its Kind

- 270,000 tons of modules (92)
  - Single heaviest module 8,200 tons
  - 137,000 tons of structural steel
- > 600,000 ft of pipe (50,000 tons)
- 2.5 MM cubic yards of gravel
- 250+ pressure vessels
- 230+ pumps and drivers
- 30+ compressors
- 850,000 horsepower
- 140 MW electrical
- Estimated job-hours:
  - 43 MM for module fabrication/assembly
  - 3.4 MM for North Slope installation
  - 5 MM for construction management services (L48 & NS)
  - 5 MM for engineering & procurement services





### Gas Treatment Plant Summary

- Mega-project largest of its kind
- World-class team
- State-of-the-art design
- High quality Class 4 capital cost estimate - \$12.2 Billion (2009 Dollars)





### Mainline and Transmission Lines Description

### Transmission lines

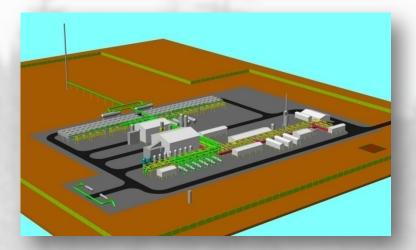
- Prudhoe: 1 mile, 60"
- Point Thomson: 62 miles, 36"
- Conventional above ground pipelines

### Mainline

- 48", 2500 psi, buried
- Base design 4.5 BCFD annual average sales
- 6 compressor stations in Alaska, 15 overall
- Expandable to 5.6 BCFD with added compression
- 730 miles in Alaska; 1020 miles in Canada
- Terminus Blueberry Hill, Alberta
- Multiple delivery points
  - Planning 6 delivery points in Alaska
  - Planning 4 delivery points in Canada
  - Additional delivery/receipt points possible based on shipper input

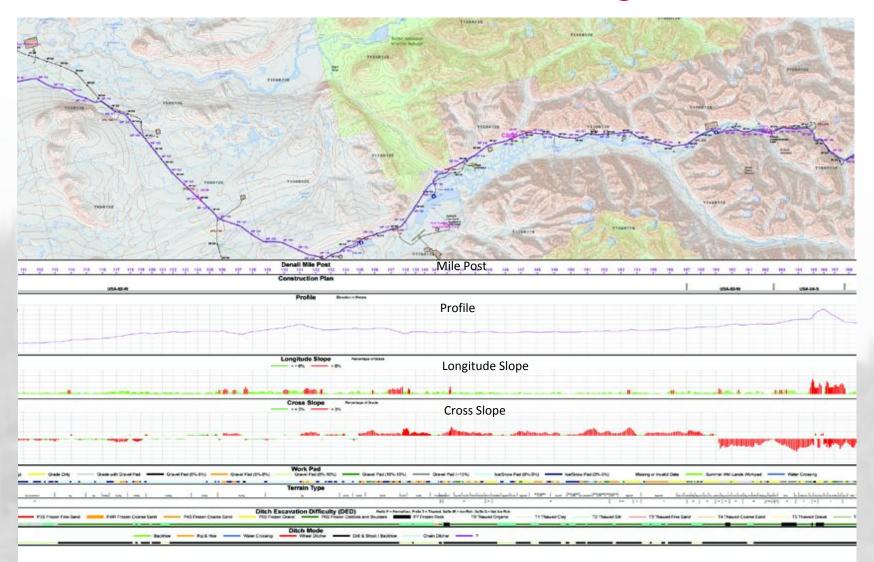


2001 -2002 trenching trials




## Mainline Engineering

- Integration with GTP
- Route Engineering
  - Proprietary thermo/hydraulics
  - 12,000 boreholes
- Pipeline Design
- Compressor Station Design
- River Crossings
- Fault Crossings
- High Strength Steel
- Proprietary Geospatial System




Aerial photo with proposed pipeline route



Schematic of refrigerated compressor station

# DENALI<br/>DENALIMainline Routethe alaska gas pipelineCharacterization and Alignment



20



### Mainline Construction Mega-Project

| ITEM                                                        | ALASKA     | CANADA     | TOTAL       |
|-------------------------------------------------------------|------------|------------|-------------|
| Mainline block valves                                       | 38         | 52         | 90          |
| Concrete weights                                            | 16,183     | 38,994     | 55,177      |
| Major river crossings                                       | 22         | 59         | 81          |
| Gravel Summary – Cubic Yards                                | 10,439,274 | 10,124,278 | 20,563,552  |
| Road, railroad, pipeline<br>crossings – significant (total) | 246 (752)  | 455 (920)  | 701 (1,672) |
| Crack arrestors                                             | 7,492      | 3,861      | 11,353      |
| Pig launchers and receivers                                 | 7          | 11         | 18          |
| Access Roads (miles)                                        | 49         | 231        | 280         |
| Processed Bedding and<br>Padding (Cubic Yards)              | 1,610,318  | 3,778,896  | 5,389,214   |
| Pipe quantities (tons)                                      | 947,164    | 1,289,079  | 2,236,243   |



## Mainline Construction Multiple Activities

- Survey
- Access road
- Clearing
- Graded ROW
- Gravel work pad
- Frost packing
- Ice or snow pad
- Stringing
- Bend and set up
- Line up and weld
- AUT inspection
- Crack arrest
- Field coating

- Trenching
- Drill and shoot
- Hoe ditch
- Bedding/padding production
- Bedding
- Lower in
- Padding and backfill
- Stream and river crossing
- MLV installation
- Tie-in
- Clean up

- Restoration
- Camp move
- Construction support
- Contractor staff
- Denali inspection
- Clean, hydro-test and dry
- CS Fabrication
- CS construction



### Mainline Cost Estimate Crew Method

- Productivity benchmarking
- Lay rate assumptions
- Winter/summer season length
- Construction plan and schedule by season
- Terrain conditions
- Joint length
- Spread length





### Mainline Cost Estimate Vendor Request for Information

#### **Mechanized Welding Equipment**

- RMS Welding Systems
- CRC Evans Automatic Welding
- SERIMAX North America
- Vermaat Technics, B.V.

#### Aut Contractors

- Shaw Pipeline Services
- TEAM / AITEC
- UT Quality, Inc.
- Weldsonix, Inc
- RTD Quality Services
- RTD Pipeline Services USA, LP

#### **Trenching Contractors**

- ARB, Inc
- H. L. Chapman Pipeline Construction
- Sheehan Pipeline Construction Co.
- US Pipeline, Inc.
- Welded Construction, L.P.
- ECC-VECO
- Snamprogetti Canada (Saipem)

#### **Bending Equipment**

- CRC
- IPEC
- Worldwide Machinery

#### **HDD Contractor**

- Direct Horizontal Drilling
- Laney Directional Drilling Co.
- Michels Corporation
- Southeast Directional Drilling

#### **Trenching Manufacturers**

- Vermeer Manufacturing Co.
- Tesmec Usa, Inc.
- Rocksaw International, Inc
- Aztec Underground
- Trencor, Inc.
- Mastenbroek, Ltd

### Equipment Purchase And Rental Rates

- Equipment Watch Online Service
- Bechtel Pipeline Construction
  Group
- Caterpillar
- John Deere
- Komatsu
- Worldwide Machinery

#### US Pipeline Contractors Plca (Union) Affiliated

- ARB, Inc.
- Associated Pipe Line Contractors
- Price Gregory Construction, Inc
- Price Gregory International, Inc.
- Sheehan Pipeline Construction Co.
- US Pipeline, Inc.
- Welded Construction, L.P.
- AES-Houston Contracting Company
- Appalachian Pipeline Contractors,
- Henkels And Mccoy, Inc.
- Latex Construction Company
- Michels Corporation
- Minnesota Limited, Inc.
- Precision Pipeline, Llc
- Rockford Corporation
- Willbros Construction (US) LLC

#### **Non-union Affiliated**

- Rogers Phillips, Inc.
- Ledcor (Us)



### Mainline Cost Estimate Vendor Request for Information

#### US Civil Contractors Union Affiliated

- Ahtna Construction
- Alaska Frontier Constructors
- Brice Companies
- Cruz Construction
- Granite Construction
- Great Northwest Inc
- Quality Asphalt Paving
- Kiewit Pacific Company
- Goodfellow Bros., Inc.

#### US Civil Contractors Non-union Affiliated

- ASRC Energy Services, Inc.
- Conam Construction Company
- Peak Oilfield Service Company
- AES-Houston Contracting
- Alaska Interstate Construction, LLC
- Brice Companies
- Cruz Construction
- Peak Oilfield Service Company
- Alaska Frontier Constructors/Nanuq

#### **Canadian Pipeline Contractors**

- Ledcor Pipeline, Ltd
- Robert B. Somerville Co., Ltd.
- North American Construction Group
- OJ Pipelines
- Waschuk Pipeline Construction, Ltd.
- Willbros Canada
- Banister/Louisbourg Group
- Michels Canada Company
- Aecon Civil And Utilities Group

#### **Canadian Civil Contractors**

- Ledcor Pipeline, Ltd.
- North American Construction Grp, .
- Flint Energy Services, Ltd.
- PCL Constructors
- Graham Industrial
- Peter Kiewit Sons
- Stuart Olson
- Sureway Construction
- Voice Construction
- Aecon Civil and Utilities Group





### Mainline Cost Estimate Material Vendor Quotes

#### **Mainline Pipe**

- Sumitomo
- JFE
- Nippon
- Europipe
- Welspun

#### **Pipeline Compressors**

- General Electric
- Air Cooler Heat Exchangers
- Hudson

#### GTG

Solar Turbines

### Heavy Wall Vessels

- ATB
- Cessco
- Dacro
- Daekyung
- HICO
- IPS
- Taylor Forge

#### **Glycol Heaters**

- BIH
- HRC
- Pig Launcher
- TD Williamson

### **Propane Refrigeration Package**

- Solar Turbines (Elliott compressor)
- General Electric

#### **HP Chillers**

- Koch Italy
- Hughes Anderson

### Light Wall Vessels

- Custom Fab
- Hanover
- Melloy
- Lisung
- HICO

### Buildings

- CH2M Hill
- ASRC

•

- Tarpon
  - Brytex Bldg.

#### **Custody Meter System**

Daniel

### **Diesel Engineering Generator Sets**

• NC Power Systems Co.

#### Fuel Gas Conditioning Skid

Cobey

#### **Oil Handling and Storage Skids**

Cobey

#### Instrument Air Compressor Packages

Atlas Copco

#### Flare Stack

Callidus

#### SCADA

Bechtel Historical

#### Telecommunication

- AT&T
- GCI



### Atigun Pass Fly-Through





### Mainline Cost Estimate Summary

- Non-factored
- Resource loaded
- Construction modes defined
- Equipment loaded
- Quantity based
- Mile by mile design



- Current industry cost and productivity inputs were benchmarked
- World class team major US and Canadian pipeline construction contractors integrated into project team
- High quality Class 4 capital cost estimate \$22.9 Billion (2009 Dollars)
  - \$10.4 billion in Alaska
  - \$12.5 billion in Canada





(All costs in 2009 \$)

- High quality Class 4\* cost estimate \$35 billion
- Estimated rate GTP to Alberta \$2.67/MMBtu (excluding fuel)

### **Cost and Rate Summary**

29

|                  | GTP  | Alaska<br>Mainline | Canada Mainline | Total |
|------------------|------|--------------------|-----------------|-------|
| Cost, \$billions | 12.2 | 10.4               | 12.5            | 35    |
| Rate, \$/MMBtu   | 0.90 | 0.80               | 0.97            | 2.67  |

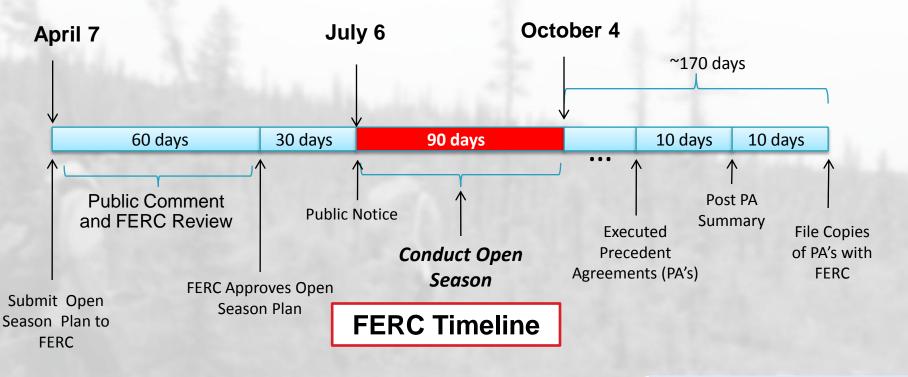
- Denali offering multiple services
  - Prudhoe Bay and Point Thomson transmission lines (0.4¢, 26¢/MMBtu)
  - Unbundled GTP services; treated gas for North Slope use
  - Distance sensitive rates for in-state deliveries

| GTP Services            |      |  |
|-------------------------|------|--|
| Treating<br>\$/MMBtu    | 0.67 |  |
| Compression<br>\$/MMBtu | 0.23 |  |

\* Association for the Advancement of Cost Engineering International

| In-State Deliveries<br>(Pipeline only) |      |  |  |
|----------------------------------------|------|--|--|
| Fairbanks<br>\$/MMBtu                  | 0.50 |  |  |
| Delta Junction<br>\$/MMBtu             | 0.59 |  |  |




Key Terms

- Key Foundation Shipper qualifications
  - Meet credit worthiness standards
  - Execute precedent agreement–minimum term 20 years
  - No minimum volume requirement
  - Denali terms encourage smaller leaseholders, State, explorers, end users to participate in open season
- Foundation Shipper benefits
  - 5 year extension option
  - Negotiated, levelized rates
  - "Most favored nation" clause
  - Recognition of project uncertainty decision points as new information is developed
- Depreciation over 25 years
  - Denali taking risk that remaining 20% of capital can be recovered from late life shippers
  - Unrecovered depreciation recouped over remaining life
- Responsive to shipper concerns
  - Denali will not require existing shippers to subsidize expansion shippers
  - Willing to consider project alternatives (e.g., reduced capacity project, LNG pipeline)





- Open season provides:
  - Open access to capacity on the pipeline
  - Customer/transporter negotiations
  - Binding commitments for the next steps in project development
- Overseen by the FERC in the U.S. and by the NEB in Canada
- Simultaneous open season process in Canada





### **Key Elements for Success**

- Cost and schedule management
- Defined regulatory processes
- Commercial agreements with customers
- Resolution of stakeholder interests
- □ Attractive financing
- Resolution of State of Alaska issues
  - Resource uncertainty
  - Fiscal terms
- Natural gas market outlook





- Denali's Open Season Plan approved by FERC
- Denali's open season scheduled to begin July 6, 2010
- Quality cost estimate and execution plan to provide customer confidence
- Attractive commercial terms designed to recognize risks
- Open season results should signal market's assessment of Alaska North Slope gas competitiveness
- Next steps will be determined by level of customer support



### For additional information, please visit:

### www.denalipipeline.com

### ... and sign up to receive email updates

Together. moving. energy.