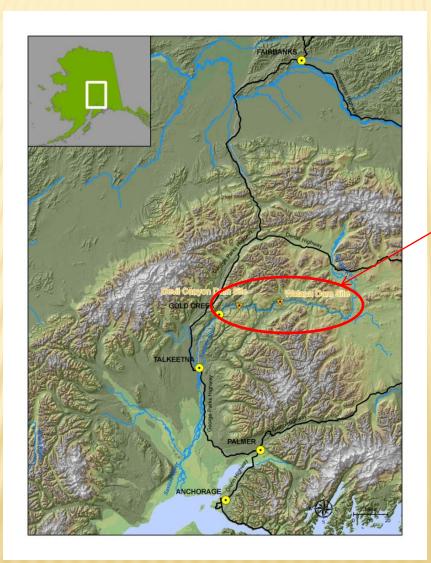
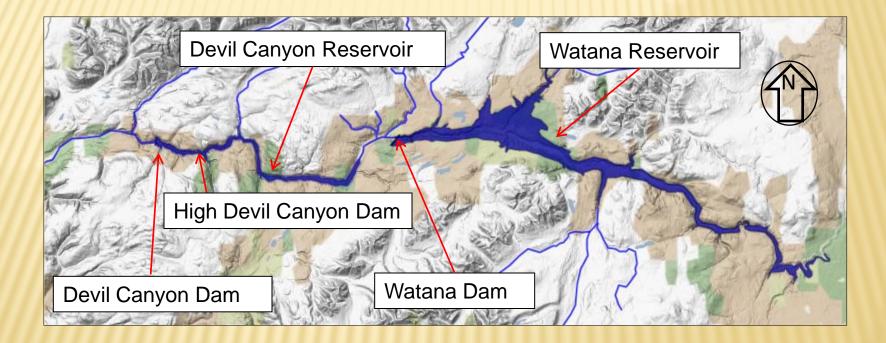
SUSITNA HYDROELECTRIC PROJECT PROJECT SUMMARY House Energy Committee March 11th, 2010


MAJOR POWER GENERATION PROJECTS RECOMMENDED BY THE RAILBELT INTEGRATED RESOURCE PLAN (RIRP)

- × DSM/EE Programs (2011)
- × Nikiski Wind (2011)
- × HCCP (2011)
- × Fire Island Wind (2012)
- × Southcentral Power Plant (2013)
- × Glacier Fork Hydro (2014)
- Anchorage and GVEA MSW (2015/2017)
- × GVEA North Pole GT Addition(2018)
- × Mt. Spurr Geothermal (2020)
- * Parallel pursuit of Chakachamna/Susitna/Glacier Fork
- Multiple transmission projects


The Susitna Hydro Electric Power Project March 11, 2010

SUSITNA PROJECT LOCATION

Susitna Hydro project area

Potential Project Sites

RIRP Project Susitna Evaluation

- Identify a range of single dam alternatives
 - \$12.0 \$10.0 Watana/Devil Canyon 🔺 \$8.0 Project Cost (Billion) Watana RCC 🔺 Watana \$6.0 High Devil Canyon Low Watana Expandable 🔺 Low Watana Nonexpandable Lower Low Watana 🔺 \$4.0 Devil Canyon \$2.0 \$0.0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Installed Capacity (MW)
- Estimate energy & cost

Study Results

Alternative	Dam Type	Ultimate Capacity (MW)	Construction Cost (\$ Billion)	Energy GWh/yr)	Schedule (years from start of Licensing)
Lower Low Watana	Rockfill	380	\$4.1	2,100	13-14
Low Watana Non- expandable	Rockfill	600	\$4.5	2,600	14-15
Low Watana Expandable	Rockfill	600	\$4.9	2,600	14-15
Watana	Rockfill	1,200	\$6.4	3,600	15-16
Watana RCC	RCC	1,200	\$6.6	3,600	14-15
Devil Canyon	Concrete Arch	680	\$3.6	2,700	14-15
High Devil Canyon	RCC	800	\$5.4	3,900	13-14
Watana/Devil Canyon	Rockfill/Concrete Arch	1,880	\$9.6	7,200	15 - 20
Staged Watana/Devil Canyon	Rockfill/Concrete Arch	1,880	\$10.0	7,200	15 - 24

Option selected by RIRP model

ROCK-FILLED EMBANKMENT DAMS

FOCUSED QUESTIONS

- Project Timeline 15 years from start of licensing
- Total Cost of Project \$4.9 B
- Project Cost includes Transmission to Grid
- Cost of Power to Consumers
 - Levelized cost of power for 100 years (2010 dollars) -\$0.15/kwh
- Amount of Power Supplied to Railbelt 2600 Gwh/year
- Likelihood of Completion High, majority of technical and environmental issues resolved in 1980's
- Licensing Roadblocks Next step for project is to engage stakeholders to explore project issues and concerns.

CONCLUSIONS

- Of the renewable resources in the railbelt region, the Susitna project is the most studied and best understood.
- Project is considered to be technically feasible.
- Project has potential to expand to meet future loads.
- Large hydro provides dispatchable energy and stabilizes the grid.
- Environmental and seismic risk is considered manageable.
- Long term stable cost of power.