An Assessment of Alaska Cruise Ship Wastewater Discharges by the First Cruise Ship Science Advisory Panel in 2002

Lincoln Loehr*

Member 2001-2002 Science Advisory Panel

* Stoel Rives, LLP. Seattle

Members of the 2001-2002 Science Advisory Panel

- Marlin Atkinson, University of Hawaii, Biological Oceanography
- CJ Beegle-Krause, NOAA HazMat, Oceanography and Modeling
- Kenwyn George, ADEC, Civil Engineering
- Ken Hall, University of British Columbia, Civil Engineering
- Lincoln Loehr, Stoel Rives, LLP, Oceanography
- Charles McGee, Orange Co. Sanitation Districts, Microbiology
- Alan Mearns, NOAA HazMat, Fisheries and Marine Ecology
- Michael Stekoll, University of Alaska, Chemistry
- Michael Watson, EPA, Region X, Environmental Toxicology
- David Eley, US Coast Guard (Retired), Facilitator
- Carolyn Morehouse, ADEC, Technical Support and Monitoring

Science Panel Actions 2001-02

- Inspected Vessels, including stores, solid waste
- Reviewed past effluent chemistry and bacteria data
- Recommended changes, additions for data collection
- Reviewed new data (quality, values)
- Calculated receiving water concentrations after mixing and compared to WATER QUALITY criteria

Panel inspecting ships' storage, discharge records

Assessment Questions

What's discharged?
Where does it go?
"Who" is exposed?
What are the effects?
How should we manage it?

What is Discharged?

- Black water Effluent from toilets
- Grey Water From showers, sinks, laundry
- Holding Tanks In, below engine room
- Treatment (in 2000-2002)
 - None
 - MSD
 - "Advanced" various new technologies
 - Disinfection chlorine, UV

Contaminants of Concern

- Fecal coliform bacteria
- Persistent Organics (pesticides, PCB's)
- Volatile Organic Compounds (eg, benzene)
- Polycyclic Aromatic Hydrocarbons (PAH's)
- Base Neutral/Acid Compounds (phenols)
- Trace Metals (eg, mercury, copper) and Cyanide
- Nutrients (Nitrogen, Phosphorus)

Wastewater Sampling 2000-02

- >200 samples gray and blackwater
- Bacteria, conventional pollutants, pesticides, metals, hydrocarbons, chlorine, etc
- Representative sampling very difficult
- "Advanced" Treatment systems not functioning well in 2000, much better in 2001 and 2002

Sampling port

Effluent Concentrations 2000

- Fecal Coliform 0 to 24,000,000 MPN in BOTH black and grey water (highly variable)
- Of 72 chemicals only 17 above detection limits
- Pesticides and PCBs not detected
- Nine inorganics (metals, cyanide) detected. Copper unusually high (maximum was 7100 ppb)
- Chlorine: <0.3 to 78 parts per million

Assessment Questions

What's discharged?
Where does it go?
"Who" is exposed?
What are the effects?
How should we manage it?

Large Ships

(250 - >2000 passengers)

- Discharge ports located:
 - 2 6 meters below water line
 - 1/3 way forward of twin propellers

Large Ships (250 - >2000 passengers)

- Designed to discharge up to 200 cu m (49,000 gallons) per hour underway
- Discharged effluent entrained in prop wash
- Effluent mixed in wake by both displacement water and propeller mixing

Mixing cross section 1 mile behind ship moving at 9 knots

Dilution and Dispersion Studies

- US EPA Dye Plume Study, Miami
- Science Panel Modeling and Simulation
- Dilution (Mixing) Formula Derived and Verified:
 - 4 x (ship width x ship draft x ship speed)/volume discharge rate

Comparison of Dilution Rates

- EPA Dye Study (4 ships, 9.1 to 19 Knots)
 - EPA Measured 288,412 to 643,810
 - EPA Calculated 255499 to 907,574
 - "Panel" Model 227,992 to 854,309
- Large Ships "nominal" * 50,000
- Wastewater Outfall diffuser 20 to 500

*Conservative dilution used by the Panel

Dilution (wake) Concentrations: Fecal Coliform Bacteria (based on summer 2000 data)

- Worst Case scenario (50,000:1) diluted to within a factor of 2 of criterion (200 MPN) by moving vessels
- With actual mixing (>>100,000:1) no ship effluent would have exceeded the criterion (200 MPN) regardless of level of treatment

Dilution (wake) Concentrations: Chemicals (based on 2000 data)

- The addition of effluent chemicals result in increases in the low parts per trillion range ... and easily meet all water quality criteria
- Metals from effluent result in increases in low parts per trillion range and easily meet all water quality criteria. Even the highest copper effluent value was not a problem after dilution.

Assessment Questions

What's discharged?
Where does it go?
"Who" is exposed?
What are the effects?
How should we manage it?

Exposure Pathways and Resources at Risk

- Recreational activity (kayakers, divers)
- Marine life
 - In the water column
 - On shore
 - On the Sea Surface (microlayer)
 - On the sea floor

Assessment Questions

What's discharged?
Where does it go?
"Who" is exposed?
What are the effects?
How should we manage it?

People: Fecal Coliform Bacteria

- Exceedance of the applicable bacteria standard would not result from cruise ships discharging any effluent at six knots or more and a mile from shore.
- Based on the Summer 2000 data.

Nutrients and Eutrophication

- Mean total nitrogen in wastewater 0.07 mg/L
- Below regional background after dilution >50,000:1
- Results in excess primary production 0.03 ug chlorophyll/L
- Can result in one one-hundredth or less increase of natural background production
- Considered to be trivial.

Whole Effluent Toxicity (WET) - 2002

- Six effluents tested for toxicity to 4 sensitive marine organisms
- Maximum dilution required for No Observable Effects Concentrations (NOEC's) was 2000:1 for a chlorinated grey water sample
- Median NOEC dilution was 20:1
- Least toxic were an untreated (raw) blackwater sample, and a highly treated reverse osmosis effluent.
- Highest toxicity was due to chlorination

Sea surface microlayer

Sea Surface Microlayer

- 200-300 uM thick natural film
- Plankton, eggs and larvae of fishes and invertebrates
- Diluted wastewater (moving ships) will not increase contamination of microlayer
- At issue may be non-moving (anchored) vessel discharge in protected bays, inlets

Marine Sediments

- Resulting from cumulative effects (multiple discharges over season)
- Copper is "worst case" material
- The rate of flow of Copper on suspended solids from cumulative seasonal discharges would not increase sediment concentrations above natural background

Assessment Questions

- What's discharged?
 - Where does it go?
 - "Who" is exposed?
 - What are the effects?
 How should we manage it?

Best Management Practices

- Use Green products
- Avoid stationary discharges in low tidal exchange areas
- No discharge should occur within 0.5 nMi of shellfish harvest areas
- Discharge at >6 knots, >1 mile from shore is good management practice
- Minimize chlorination

Impact of Science Panel Studies?

- State and federal legislation imposed treatment requirements on the cruise ships before the Panel's analysis and made no changes after the Panel's analysis. I think of that sequence as READY, FIRE!, AIM.
- EPA's 2008 Cruise Ship Discharge Assessment Report made effective use of the Panel's dilution analysis to put their analysis of effluent results in proper context.
- Marine Pollution Bulletin article in 2006 summarizing the Panel's work.

More Information?

http://www.state.ak.us/dec/water/cruise_ships/

Proceedings, Oceans 2003, MTS/IEEE, Columbia, Maryland

Advances in Maritime Waste Water Treatment

July, 2007

Primary Treatment Process

John M. Asplund Wastewater Treatment Facility in Anchorage

- Principal Stages:
 - Screening / Maceration
 - Sand/Grit removal
 - Settling
 - Sedimentation
- Removal
 - 35% BOD
 - 45-65% Suspended Solids
- Employed in:
 - Anchorage
 - Ketchikan
 - Sitka
 - Skagway
 - Vancouver, B.C.
 - San Diego (advanced primary)

Secondary Treatment Process

Seattle Washington

- Principal Stages: Primary
 - Primary + Biological treatment
 - Activated sludge
 - Aeration
 - Trickling filters
 - Secondary sedimentation
- Removal
 - 85-90% BOD
 - 85-90% Suspended Solids
- Employed in:
 - Juneau
 - Seward
 - Seattle

Advanced Waste Water Purification Systems (AWWPS)

- Principal Stages:
 - Primary + Secondary
 - + Filtration + Disinfection
- Removal
 - Near total elimination of BOD
 - Near total elimination of Suspended Solids
 - Near total elimination of bacteria
- Employed in ?

Large Cruise Ships sailing in the Northwest

The Defining Characteristic of AWWPS Systems is Filtration

Major Components		
	• • • •	
		Microfiltration 0.1 to 10 microns Bacteria, fine solids Ultrafiltration 0.005 to 0.05 micron Oil emulsions, pigments, colloids
٣		0.0005 to 0.005 micron Sugars, dyes, surfactants, minerals Reverse Osmosis 0.0001 to 0.001 micron
		Saits, metal ions, minerais
Water		
Close Animation		

Rochem System Overview: Gray and Blackwater Treated

- 1. Waste initially accumulated in buffer tanks
- 2. Sweco filter removes debris, other solids.
- 3. Bio Waste volume is reduced by microbial digestion
- 4. Ultra-filtration removes suspended solids (re-circulated to bio-digester)
- 5. Clean Permeate dosed with UV light to kill remaining bacteria

Summation

- Cruise lines have pioneered technology and work practices that exceed legal requirements and protect water quality
- AWWPS systems are "state of the art" and produce an outstanding quality of discharge
- Working together, we can achieve outstanding results

Risk Assessment Framework

