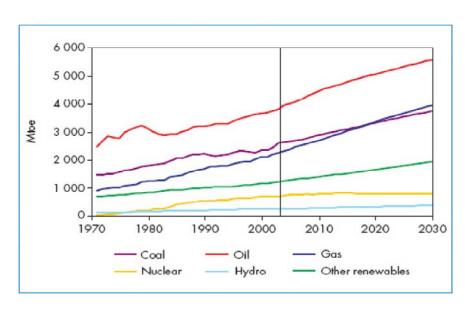
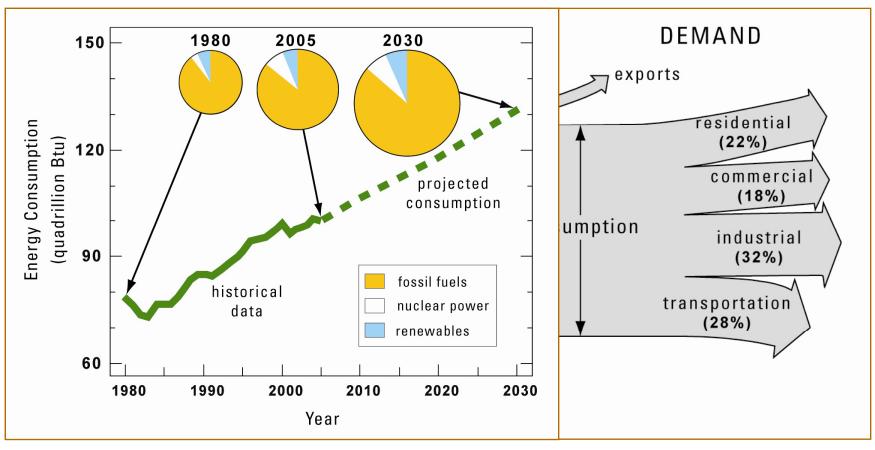
Alaska's Natural Gas – Needed or Not? What About Shale Gas and Carbon Regulation?

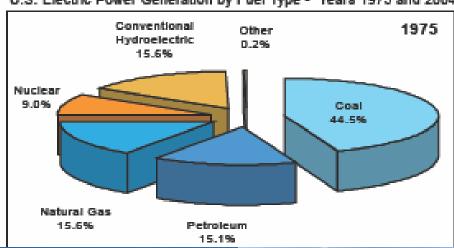

Dr. Mark Myers March 25, 2009

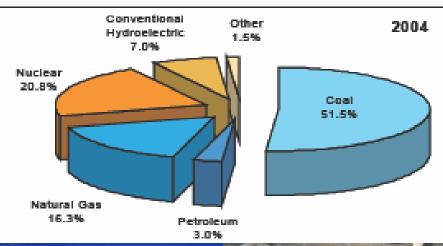
Alaska's Natural Gas is America's Resource For Enhancing Economic, Environmental and National Security


- Global competition for imported energy
- •Growing population, long term economic growth heighten worldwide demand
- •Environmental consequences of development, extraction, and use of other resources

World Energy
Consumption by
Source

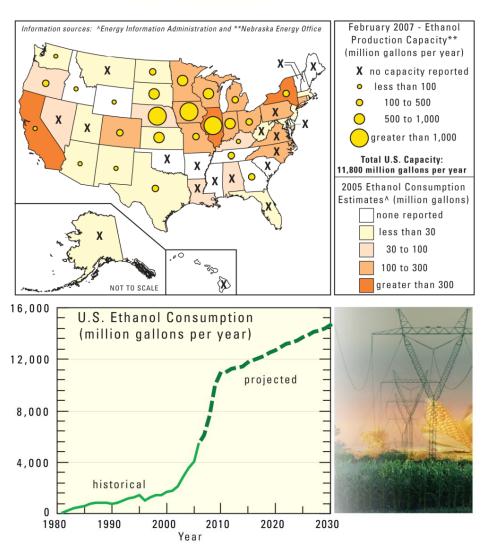
The Energy Mix for the United States

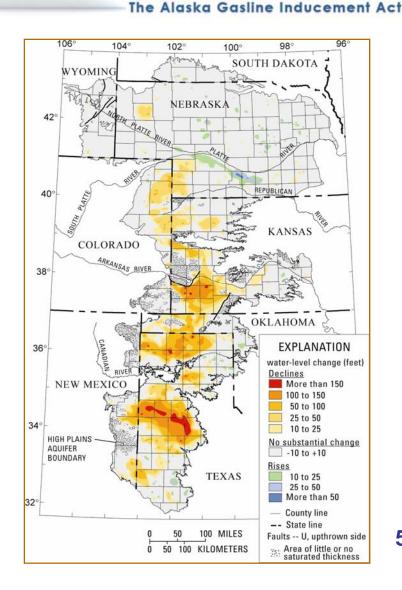




Large Changes <u>Have</u> Occurred In Fuel Sources

U.S. Electric Power Generation by Fuel Type - Years 1975 and 2004


USGS/EIA


Change in Fuel Type for Electrical Generation Over Three Decades

No Free Lunch: All New Sources of Energy Have There Own Unique Environmental Challenges: Biomass/Water

AGIA

USGS/EIA

The USA Today

- How have things changed since the legislature approved the AGIA license?
 - Global economic downturn with associated rapid decline in oil and gas prices
 - Rapid expansion of unconventional (shale) gas supplies in USA
 - Policy shift limiting access to lower 48 federal lands for non-renewable energy production?
 - First authoritative Arctic oil and gas assessment
 - Increased likelihood of carbon regulation

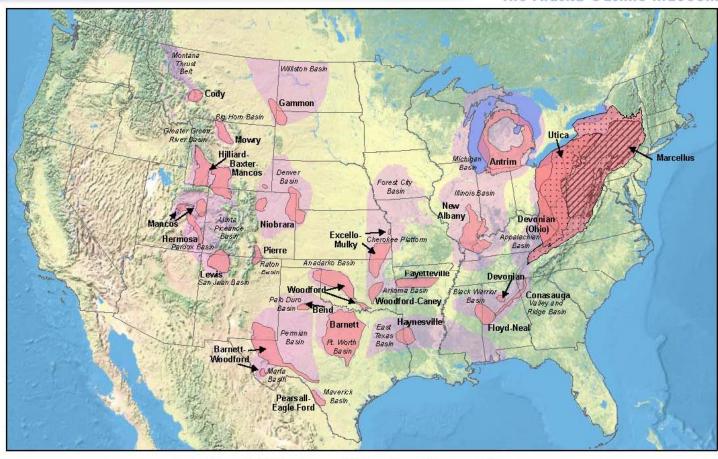
Economic 'Recession' A Gasline Inducement Act

Jim Mulva, Chairman and CEO ConocoPhillips, March 13, 2009 - Petroleumworld.com

"Costs are coming down pretty dramatically," (Mulva) said. "When we say defer, we're not talking years, we're talking months, quarters, maybe up to a year."

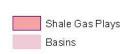
Speaking about the Denali Alaska gas pipeline project, proposed last June by ConocoPhillips and BP, Mulva said President Barack Obama has identified the 4 Bcf/d project as a means of reducing US dependence on foreign oil.

The pipeline would bring North Slope gas down to a pipeline in Alberta for transport to the Lower 48 states. "We know it's going to get far more federal attention," he said. "Obviously, Alaska would like to see it go."

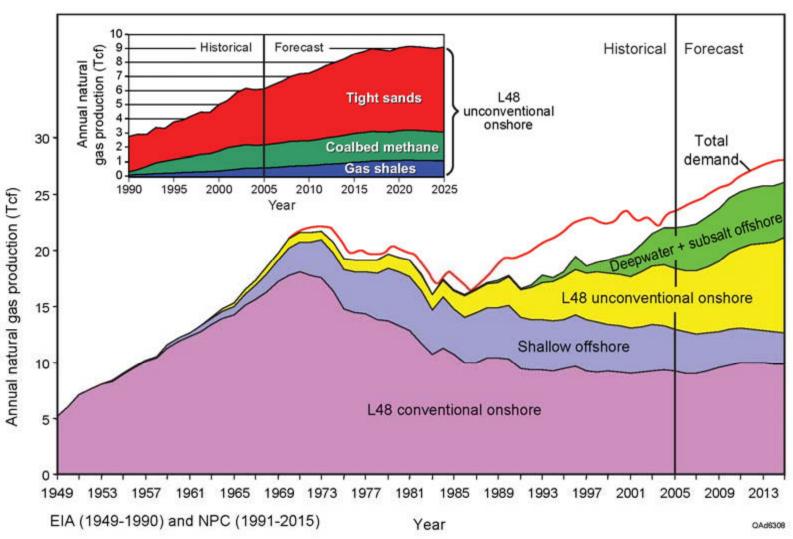

Mulva repeated the partners plan a 2010 open season for gas deliveries; first gas deliveries are eyed for 2019.

While current gas prices have led ConocoPhillips to cut back on its Canadian operations, Mulva discounted the low prices as a roadblock to the pipeline project's development.

"You can't look at gas prices today," he said. "You have to look at prices 10 years from now."

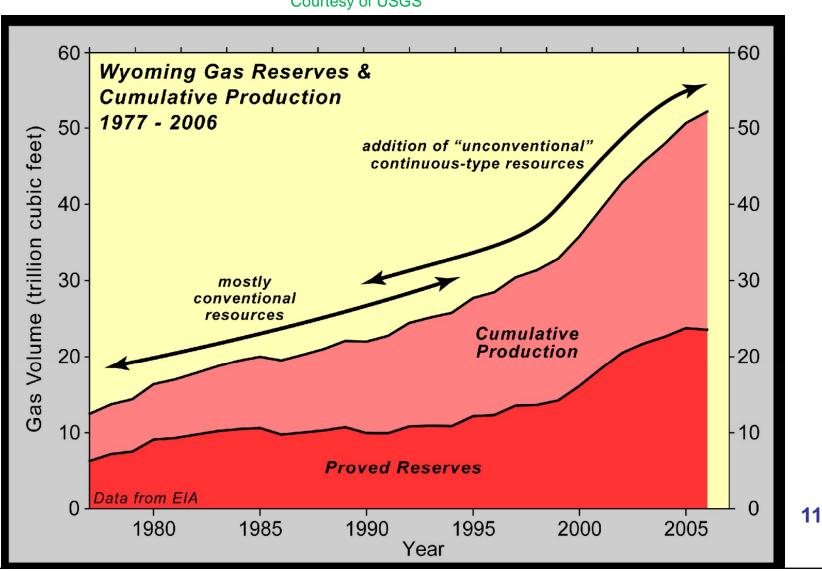

Lower 48 Shale Gas Plays

United States Shale Gas Plays



Shale Gas Provides About 5% of Domestic Production

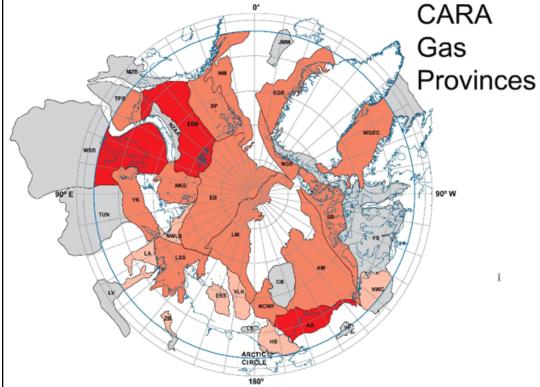
Development of New Unconventional Gas Resources


"Declines [in North America] are expected to accelerate after 2030 coinciding with the increase in LNG import volumes. Black & Veatch expects near-term production growth in the Rockies and shale plays to offset declines in the Gulf Coast and other Lower 48 production basins."

⁻ AGIA Findings and Determination; Appendix G1 – *AGIA NPV Report*

Wyoming Gas Reserves & **Production History**

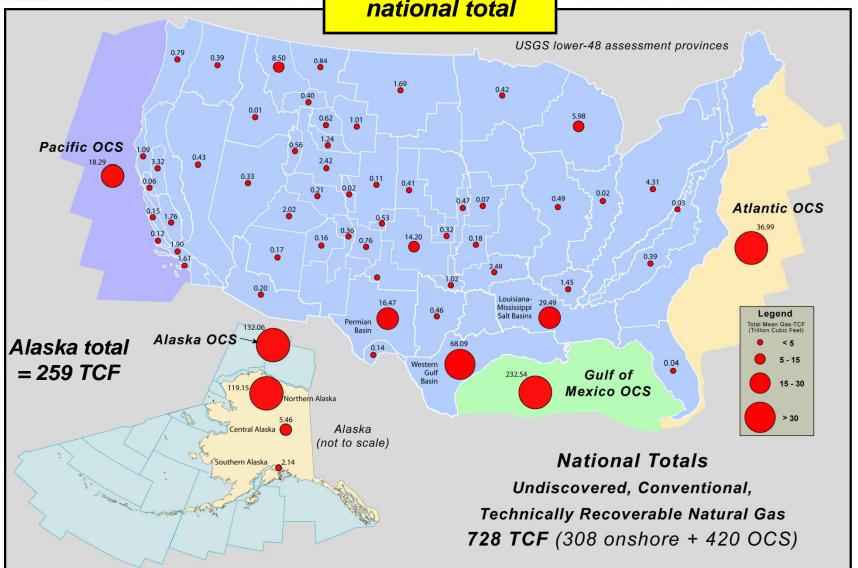
Courtesy of USGS

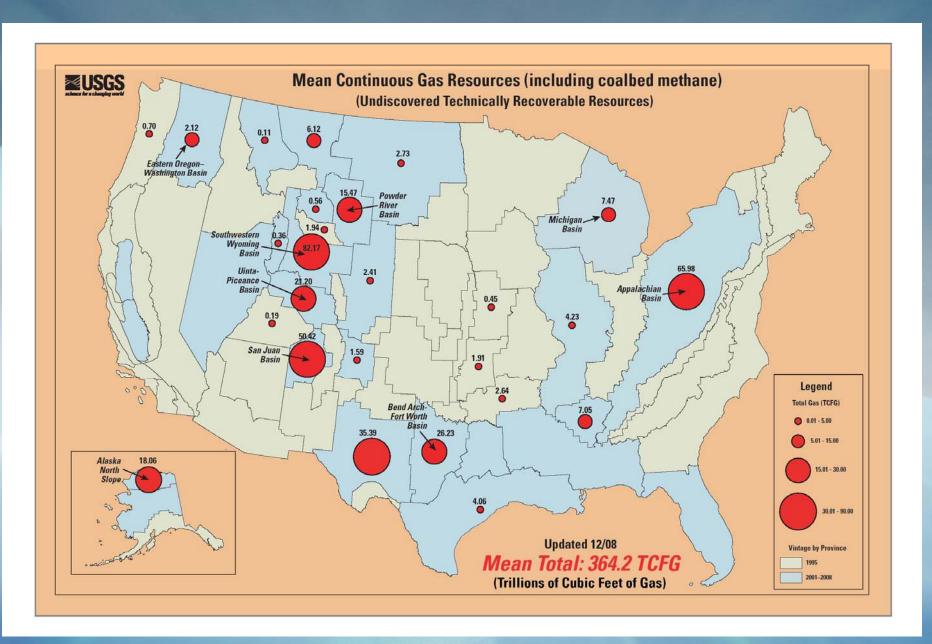

Arctic Alaska and Russia at the Top

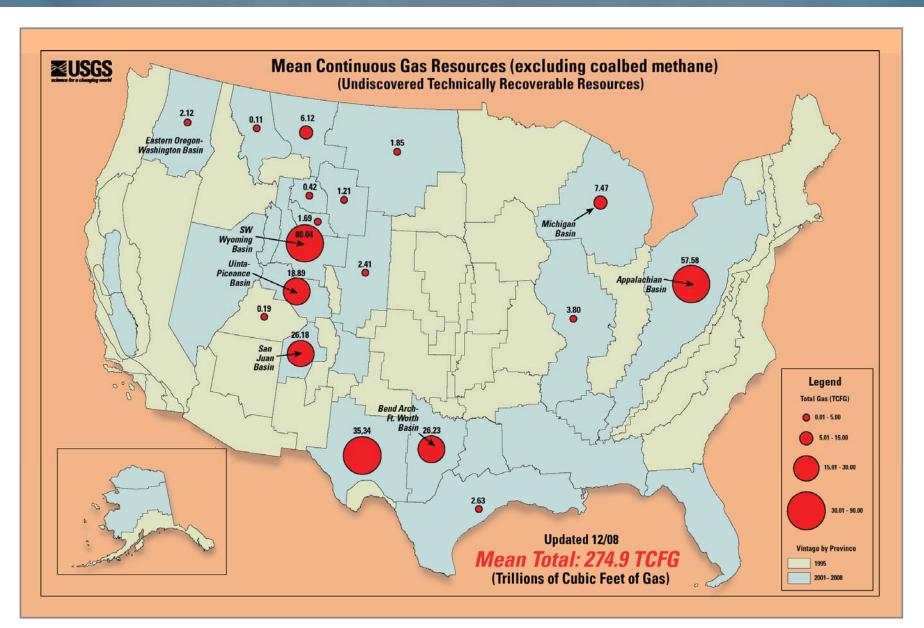
The Alaska Gasline Inducement Act

UNDISCOVERED GAS (trillion cubic feet) >100 -6-100 -66 -Area not quantitatively assessed Area of low petroleum potential

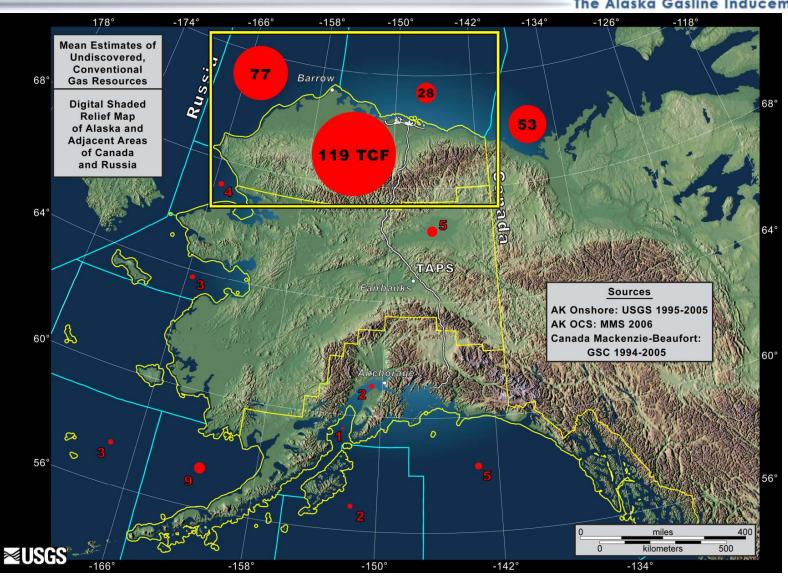
	Province Code	Province	Oil (MMBO)	Total Gas (BCFG)	NGL (MMBNGL)	BOE (MMBOE)			
ľ	WSB	Wast Siborian Parin	3,039.00	051,400.50	20,220,60	132.571.66			
į	AA	Arctic Alaska	29,960.94	221,397.60	5,904.97	72,765.52			
ľ	ERR	East Daronto Docin	7 406 49	317 557 07	1,422.20	01,/55.10			
Ì	EGR	East Greenland Rift Basins	8,902.13	86,180.06	8,121.57	31,387.04			
Ī	YK	Yenisey-Khatanga Basin	5,583.74	99,964.26	2,675.15	24,919.61			
Ì	AM	Amerasia Basin	9,723.58	56,891.21	541.69	19,747.14			
Ì	WGEC	West Greenland-East Canada	7,274.40	51,818.16	1,152.59	17,063.35			
1	100	a Shelf	3,115.57	32,562.84	867.16	9,409.87			
٨	\square	n Margin	1.437.29	32.281.01	504.73	7.322.19			


Source: USGS Fact Sheet 2008-3049


-	89,983.21	1,668,657.84	44,064.24	412,157.09
n Shelf	NQA	ADN	NQA	ADN
n Microcontinent	NQA	ADN	NQA	ADN
it	NQA	ADN	NQA	ADM
ce)				
ts (part of Central Alaska	NQA	ADN	NQA	ADN
orderland	NQA	ADN	NQA	ADN
Basin	NQA	NQA	NQA	NQA
mlya Basins and Admiralty	NQA	NQA	NQA	NQA
asin	NQA	NQA	NQA	NQA
t Canada Interior Basins	23.34	305.34	15.24	89.47
in	2.47	648.17	11.37	121.87
ian Sea Basin	19.73	618.83	10.91	133.78
Basin	47.82	1,505.99	40.14	338.95
ıi Basin	376.86	1,335.20	35.66	635.06
t Laptev Sea Shelf	172.24	4,488.12	119.63	1,039.90
lasin	98.03	5,741.87	101.63	1,156.63
ıkchi-Wrangel Foreland	85.99	6,065.76	106.57	1,203.52
bar Basin	1,912.89	2,106.75	56.41	2,320.43
N-Makarov Basin	851.11	7,156.25 8,596.36	191.20	2,491.04 2,475.04
enland Sheared Margin w-Makarov	1,349.80 1,106.78	10,207.24 7,156.25	273.09 191.55	3,324.09
chora Basin	1,667.21	9,062.59	202.80	3,380.44
Basins and Platforms	1,807.26	14,973.58	390.22	4,693.07
asin	1,342.15	19,475.43	520.26	5,108.31
latform	2,055.51	26,218.67	278.71	6,704.00
n Margin	1,437.29	32,281.01	504.73	7,322.19
a Shelf	3,115.57	32,562.84	867.16	9,409.87
enland-East Canada	7,274.40	51,818.16	1,152.59	17,063.35
a Basin	9,723.58	56,891.21	541.69	19,747.14


Undiscovered, Conventional Gas Resources of the U.S.

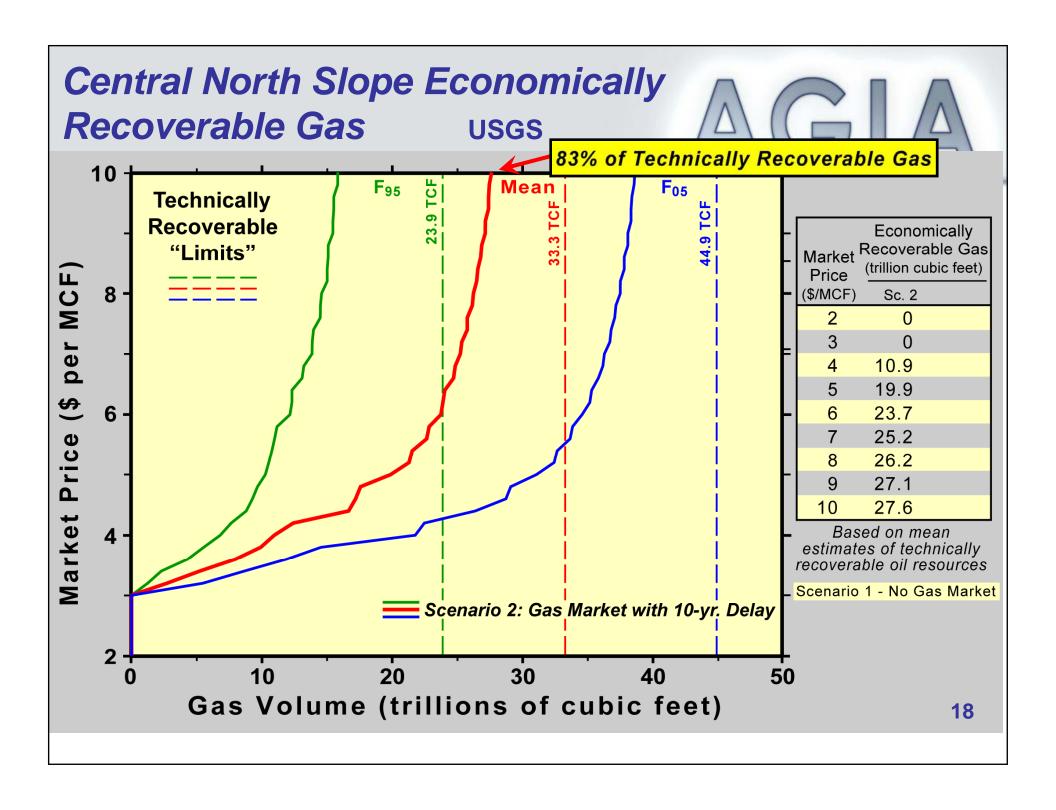
Alaska resources
= 36% of
national total



Undiscovered Conventional Gas Potential

Potential for Undiscovered Petroleum in Arctic Alaska

USGS/MMS


Mean Estimates of Undiscovered, Conventional
Natural Gas in Arctic Alaska
(trillion cubic feet)

Non-

	Associated Gas	Associated Gas	Total Gas			
Onshore & State Offshore Areas (USGS estimates)						
NPRA	61.35	11.68	73.03			
Central North Slope	33.32	4.20	37.52			
ANWR, 1002 Area	3.84	4.76	8.60			
Subtotal	98.51	20.64	119.15			

Federal Offshore Areas	deral Offshore Areas (MMS estimates)						
Chukchi Shelf	na	na	76.77				
Beaufort Shelf	na	na	27.65				
Hope Basin	na	na	3.77				
Subtotal	na	na	108.19				

TOTAL	227.34
TOTAL	221.34

North Slope Gas Potential DOE

	Estimate of undiscovered	Estimate of
	technically recoverable	economically recoverable*
	conventional natural gas	natural gas reserves
Location	(Trillion Cubic Feet) Mean	(Trillion Cubic Feet) Mean
National Petroleum Reserve, Alaska	a 73.0	31.0
Central North Slope, State Lands	37.5	33.3
ANWR 1002 area	8.6	1.0
TOTAL Onshore Potential	119 TCF	66.3 TCF
Chukchi Sea	76.8	50.0
Beaufort Sea	27.7	21.0
Hope Basin ?	3.8	
TOTAL Offshore Potential	108 TCF	71.0 TCF
TOTAL TCF	227 TCF	137.3

Data Sources: Regional Resource Assessments from the U.S. Geological Survey, http://energy.usgs.gov/alaska/ and Minerals Management Service http://www.mms.gov/alaska/re/reports/2006Asmt/

^{*}NETL This study did not include Hope Basin.

Alaska's North Slope is Very Under-Explored

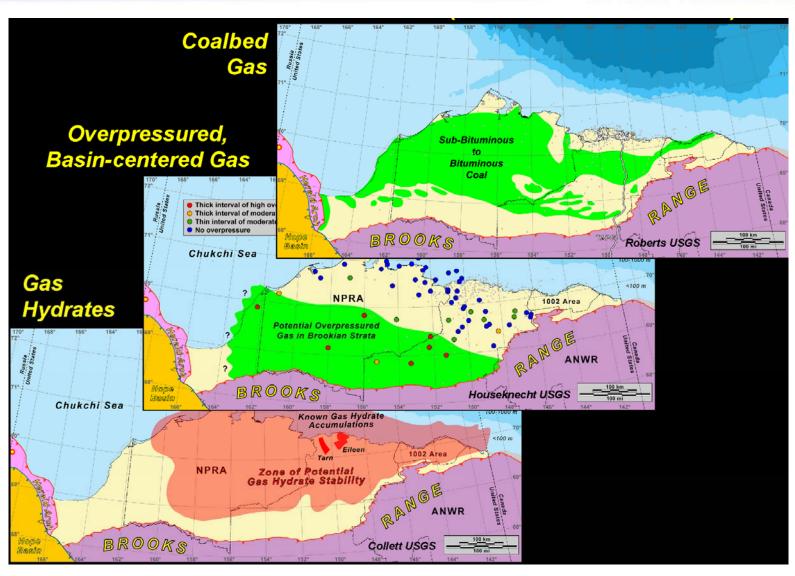
Burger

Arctic Alaska Exploration Maturity

- Prospective area onshore & offshore shelves ~ 150,000 mi² (~400,000 km²)
- Fewer than 500 exploration wells (red dots)

Arctic Alaska Exploration Well Density ~3 wells/1,000 mi²

Prudhoe Bay


Wyoming Exploration Well Density ~250 wells/1,000 mi²

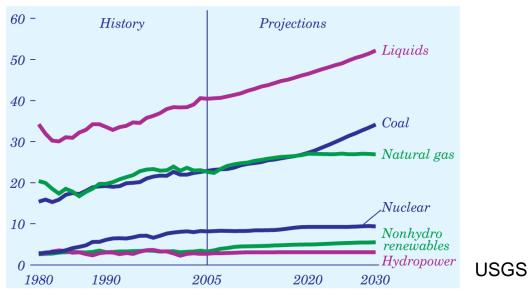
Wyoming natural gas (EIA data):
Cumulative Production 21 TCF (1981-2006)
Proved Reserves ~24 TCF (2006)

- Entire state of Wyoming ~100,000 mi² (~250,000 km²)
- Petroleum-prospective area ~75,000 mi² (~250,000 km²)
- ~19,371 exploration wells

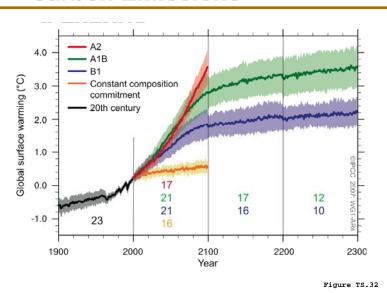
Unconventional Gas Resources (continuous resources)

Alaska North Slope Natural Gas Hydrate Assessment Results

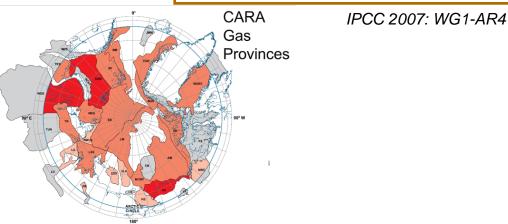
[BCFG, billion cubic feet of gas. MMBNGL, million barrels of natural gas liquids. Results shown are fully risked estimates. F95 represents a 95-percent chance of at least the amount tabulated; other fractiles are defined similarly. Fractiles are additive, assuming perfect positive correlations. NGL, natural gas liquids; TPS, total petroleum system; AU, assessment unit.]


		Total Undiscovered Resources							
Total Petroleum System and Assessment Unit	Field Type	Gas (BCFG)			NGL (MMBNGL)				
and Assessment ont		F95	F50	F5	Mean	F95	F50	F5	Mean
Northern Alaska Gas Hydrate TPS	Northern Alaska Gas Hydrate TPS								
Sagavanirktok Formation Gas Hydrate AU	Gas	6,285	19,490	37,791	20,567	0	0	0	0
Tuluvak-Schrader Bluff-Prince Creek Formations Gas Hydrate AU	Gas	8,173	26,532	51,814	28,003	0	0	0	0
Nanushuk Formation Gas Hydrate AU	Gas	10,775	35,008	68,226	36,857	0	0	0	0
Total Undiscovered Resources		25,233	81,030	157,831	85,427	0	0	0	0

Source: USGS Fact Sheet 2008-3073


Alaska's Arctic Natural Gas: Critical Bridge to a Sustainable Future

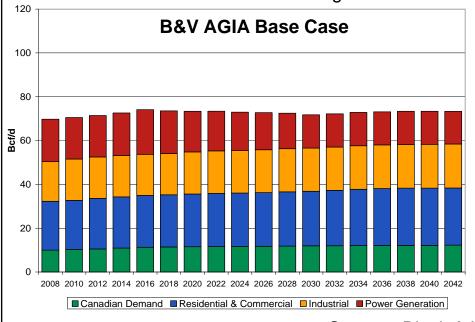
United States Energy Consumption by Fuel

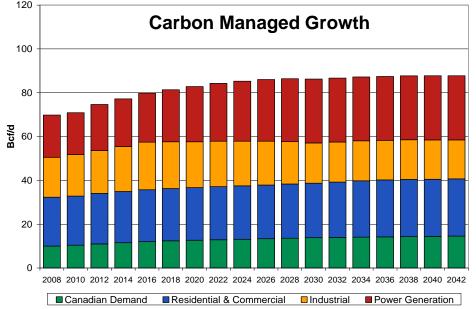


Carbon Emissions

23

EIA

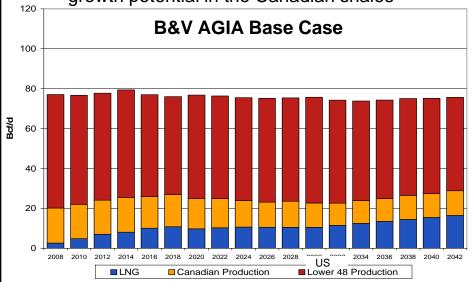


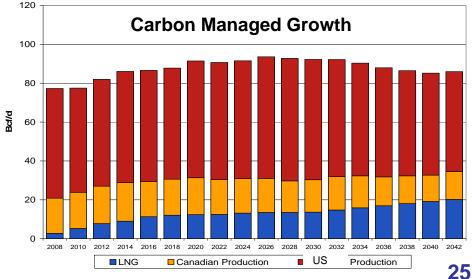

Impact of Carbon Regulation on Natural Gas Demand

In a Carbon Managed Growth case, demand is 14 Bcf/d more than the B&V AGIA Base Case

- Policies and legislations designed to curb Green House Gas could reduce dispatch and construction of coal-fired generation facilities in favor of natural gas fired facilities, resulting in demand increase from the power sector in the US
- All resources, including renewables, nuclear and IGCC with CCS and gas fired combined cycles are all needed to meet electric demand growth. Gas demand from the power sector will grow from 19 Bcf/d in 2008 to 29 Bcf/d by 2030, with a CAGR of 2%
- Total demand in US lower 48 states is 12.1 Bcf/d higher than BV's AGIA Base Case by 2042.
 Canada demand is 2.3 Bcf/d higher in the Carbon Managed Growth case

Source: Black & Veatch Analysis

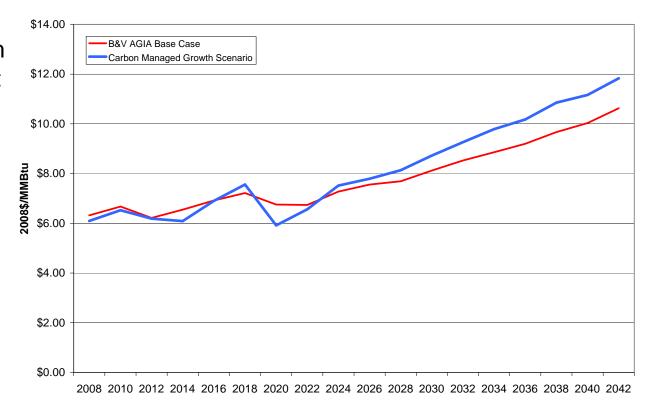

Multiple Different Sources of Natural Gas will be Needed to Meet Lower 48 Demand Growth



Additional LNG imports and more unconventional productions from the US is necessary in order to meet the lower 48 demand growth

- Additional LNG imports will be needed to meet the demand growth; 6.4 Bcf/d by 2042 in the Carbon Managed Growth scenario
- US Production will average 58.3 Bcf/d from 2022-2042 in the Carbon Managed Growth case, which will be 7.8 Bcf/d higher than the B&V AGIA Base Case. Recent developments in shale discoveries in Haynesville and Marcellus indicate greater production potentials from these unconventional resources. The production growth can be considered as a proxy.

 Canadian production continues to decline in both cases. In the Carbon Managed Growth case, Canadian production is 3.7 Bcf/d higher than in the B&V AGIA Base Case, which may approximately reflect the growth potential in the Canadian shales


Source: Black & Veatch Analysis

Impact of Carbon Regulation on AECO Price Forecasts

- The Carbon Managed Growth case has sufficient supplies from North America to meet the high demand from both unconventional production and slightly higher additional LNG volumes
- North American gas price is projected to have a higher price path than in the AGIA base case

Price Comparison at AECO - B&V AGIA Base Case and Carbon Managed Growth Scenario

Liquid Natural Gas (LNG) Imports

LNG import volumes have experienced little net change since the legislature approved the AGIA license

Total US LNG Import Volumes

July 2008: 31,019 mmcf

December 2008: 30,708 mmcf