

The Honorable Ky Holland
The Honorable Donna Mears
House Energy Committee
Alaska State Capitol
120 4th Street
Juneau, AK 99801

Wednesday, February 4, 2026

Dear Representatives Holland and Mears:

On behalf of Greensparc, Inc., I appreciate the opportunity to submit this letter for the legislative record in response to the introduction of House Bill 259, Large Energy Use Facilities. We understand that Greensparc has been cited publicly as an example of the concerns the bill seeks to address, including in connection with a proposed project in Wrangell, Alaska. We welcome the opportunity to clarify our model and to respond constructively.

At the outset, we want to state clearly that Greensparc supports the core objectives of HB 259. We agree that large energy users must not shift costs or risks to existing ratepayers, that utilities and communities must be protected from stranded investments, and that long-term stability is essential when integrating significant new loads into small or constrained systems. These principles are foundational to our business model and to how we have approached projects in Alaska from the beginning.

As context, I am an Alaskan, born and raised in North Pole, Alaska, and I founded Greensparc with a long-term commitment to responsible infrastructure development in underserved markets. Our work is informed by direct experience operating infrastructure in rural and high-cost environments. We understand firsthand the importance of reliability, conservative planning, and protecting local utilities and communities from unintended consequences. Our intention has always been to build projects that strengthen, rather than stress, rural and remote energy systems.

Greensparc develops and operates modular, utility-aligned data and AI infrastructure designed specifically for constrained or remote grids. We do not pursue short-term load strategies. Our projects are structured around long-term, contracted demand; explicit allocation of generation, transmission, distribution, and infrastructure costs to the project; and financial structures that ensure utilities are compensated for all costs incurred to serve our facilities. In many cases, this includes customer-funded infrastructure, firm service commitments, and operational flexibility that reduces system risk rather than increasing it.

Regarding the concerns that motivated HB 259, we would like to emphasize several points. First, Greensparc projects are designed to be bankable loads, not opportunistic ones. Our customers require long-duration, highly reliable compute capacity, which inherently supports long-term utility contracts and stable load forecasts. We do not assume future ratepayer participation in project costs.

Second, we seek opportunities to design systems for load flexibility, curtailment, and demand response. Unlike many industrial loads, AI and data workloads can be dynamically managed to support grid reliability and peak conditions. Properly structured, this flexibility can reduce risk to utilities and provide measurable system benefits, particularly in isolated or resource-constrained systems.

Third, we believe community alignment is essential. Greensparc supports community engagement and consistently does so early in a project's development to address areas such as emergency response planning, local workforce participation, waste heat utilization (where feasible), and end-of-life decommissioning responsibilities. We view community partnerships and mutual benefit as essential to responsible infrastructure development in Alaska and globally.

Finally, we respectfully note that while HB 259 addresses concerns raised elsewhere in the country, its implementation should be Alaska-specific and preserve flexibility for utilities and communities to contract for new large loads when doing so is in their interest. Alaska's utilities and municipalities are diverse in size, structure, and circumstances, and they are best served by clear guardrails, not by prescriptive requirements that constrain or inadvertently bind them to agreements that are not responsible or mutually beneficial. Maintaining this flexibility is essential to enabling well-structured projects that strengthen local economies, improve utility financial stability, and responsibly integrate new infrastructure into Alaska's energy systems.

Greensparc stands ready to work with legislators, regulators, utilities, and host communities to harness Alaska's vast energy resources, attract well-structured external investment to the state, and ensure Alaska participates in the global data and AI infrastructure economy. We appreciate the Legislature's attention to these issues and welcome continued dialogue as the legislature continues the public conversation.

Respectfully,
Sam Enoka
Chief Executive Officer & Founder
sam@greensparc.com

Greensparc Data Centers for Alaska

The Challenge & Solution: Alaska's Data Center Opportunity

Many of Alaska's 200+ remote communities pay high energy costs, yet often have surplus renewable power (hydro, wind, geothermal) that goes unused. Large hyperscale data centers demand vast land, water, and grid upgrades—an impractical fit. Greensparc's model matches Alaska's scale, using what's already built to deliver immediate economic and energy benefits.

Advantages: Fast deployment, minimal new infrastructure, and direct community and utility benefit.

- Can deploy in existing buildings or on utility land
- Designed to use available renewable capacity
- Supports jobs and local revenue

Further Reading

- [Bridging the Digital Divide: In Alaska and Remote Communities](#)
- [Greensparc Pilot at Cordova Electric](#)
- [BBC: Honey, I shrunk the data centres: Is small the new big?](#)

Contact Us

Sam Enoka

sam@greensparc.com
www.greensparc.com

Scan For
More Info

Hyperscale vs. Sub-Scale Data Centers: Alaska Environmental Impact Comparison

Factor	Hyperscale Data Centers	Greensparc Sub-Scale Data Centers
Water Consumption	~550,000 gallons/day	closed loop water/glycol, cold climate cooling
Land Use	200-500+ acres per facility	Existing buildings or small prefab units
Energy Demand	Dedicated grid expansions, fossil fuels	Uses stranded renewables (hydro, wind, geo when possible) and designed for smart capacity timing
Noise Pollution	Continuous cooling fan noise	Minimal—remote siting, no community impact
Heat & Microclimate	Alters local temperatures	Cold air cooling, no heat island effect
Community Strain	Can stress local utilities	Strengthens locals, avoids “NIMBY” conflict

◆ Our Environmental Design Principles

- Energy-first sighting: Uses existing renewable microgrids
- Minimal water cooling: Leverages cold climate
- Small footprint: No habitat loss or NIMBY issues
- Grid-responsive: Matches local energy flows

◆ Alaska-Specific Value Proposition

- Jobs and workforce opportunities in underserved regions
- Monetizes excess renewable power
- Brings modern computing to remote communities
- Partners with Alaska Native corporations
- Stabilizes grids and reduces wasted energy
- Model for distributed, climate-smart infrastructure
- Example uses: surplus hydro in Southeast, geothermal microgrids in the Interior, wind in coastal villages
- Energy & Grid Benefits
- Community & Environmental Leadership

50-80% OPEX Savings 30-40% TCO Savings

Immediate GPU Availability

- Micro, Scalable, Modular Prefabricated Design
- 90% Reduction in Footprint
- Open Standards (OCP)

Up to 50% Energy Reduction vs. On-Prem

- Carbon, Energy and Water Reduction
- Supply Chain Circularity

530 sq. ft. for 256 GPU Power

- Self Contained
- GPU Dense
- Small square footage, max access

◆ Next Steps for Engagement

Demonstrate local benefits with pilot 1-2 projects.

Contact Greensparc to discuss partnership opportunities and deployment.

Sam Enoka

sam@greensparc.com
www.greensparc.com

Eco System: utilities, legislation, local communities

- Fill in after meeting