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Highlights 20 

• The presence of a significant PFAS source near Gustavus, Alaska, was confirmed. 21 

• PFOS and PFHxS were most abundant in Gustavus resident serum and well water.  22 

• PFAS concentrations in serum and well water were positively associated. 23 

Abstract 24 

Per- and polyfluoroalkyl substances (PFAS) have become a target of rigorous scientific 25 

research due to their ubiquitous nature and adverse health effects. However, there are still gaps 26 

in knowledge about their environmental fate and health implications. More attention is needed 27 

for remote locations with source exposures. This study focuses on assessing PFAS exposure in 28 
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Gustavus, a small Alaska community, located near a significant PFAS source from airport op-29 

erations and fire training sites. Residential water (n = 25) and serum (n = 40) samples were 30 

collected from Gustavus residents and analyzed for 39 PFAS compounds. In addition, two wa-31 

ter samples were collected from the previously identified PFAS source near the community. 32 

Fourteen distinct PFAS were detected in Gustavus water samples, including 6 perfluorinated 33 

carboxylic acids (PFCAs), 7 perfluorosulfonic acids (PFSAs), and 1 fluorotelomer sulfonate 34 

(FTS). ΣPFAS concentrations in residential drinking water ranged from not detected to 120 35 

ng/L. High ΣPFAS levels were detected in two source samples collected from the Gustavus 36 

Department of Transportation (14,600 ng/L) and the Gustavus Airport (228 ng/L), confirming 37 

these two locations as a nearby major source of PFAS contamination. Seventeen PFAS were 38 

detected in serum and ΣPFAS concentrations ranged from 0.0170 to 13.1 ng/mL (median 39 

0.0823 ng/mL). Perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid 40 

(PFHxS) were the most abundant PFAS in both water and serum samples and comprised up to 41 

70% of ΣPFAS concentrations in these samples. Spearman’s correlation analysis revealed 42 

PFAS concentrations in water and sera were moderately and positively correlated (r = 0.495; 43 

p = 0.0192). Our results confirm a presence of a significant PFAS source near Gustavus, Alaska 44 

and suggest that contaminated drinking water from private wells contributes to the overall 45 

PFAS body burden in Gustavus residents.  46 

 47 

Keywords: Aqueous film-forming foams (AFFFs), Arctic Health, Drinking water, Per- and 48 

polyfluoroalkyl substances (PFAS), Perfluorohexanesulfonic acid (PFHxS), Perfluorooctane 49 

sulfonate (PFOS). 50 
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1. Introduction 52 

Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organic compounds 53 

that have been used in industrial and commercial applications since the 1940s and includes 54 

more than 9000 substances (EPA, 2020). For many PFAS, fluorinated alkyl chains give them 55 

high thermostability and water/grease-repellent properties. The ability of PFAS to repel both 56 

water and grease comes from their unique structure that includes both hydrophobic and hydro-57 

philic functionalities (Kissa, 1994). Due to these properties, PFAS have been widely used as 58 

surfactants, adhesives, and emulsifiers in a variety of industrial applications and consumer 59 

products (Buck et al., 2011). In addition, their ability to lower aqueous surface-tension makes 60 

them a useful component in fluoropolymer manufacture and aqueous film-forming foams 61 

(AFFFs) that are used to extinguish fires from highly flammable liquids (Kissa, 2001).  62 

As a result of their widespread use, PFAS have become ubiquitous in the environment and 63 

in humans. Although the presence of synthetic fluorinated substances in humans was first de-64 

tected in the late 1960s, the interest in the environmental fate of PFAS significantly increased 65 

in the 2000s and has risen to a national priority in the United States and globally in the last few 66 

years (EPA, 2021a; Taves, 1968). Many PFAS are extremely persistent in the environment and 67 

resist biodegradation, direct photolysis, hydrolysis, and photooxidation (3M, 2000a; Schultz et 68 

al., 2003; Wang et al., 2017). The two most well-known PFAS, perfluorooctane sulfonate 69 

(PFOS) and perfluorooctanoic acid (PFOA), were extensively manufactured between 1940s 70 

and 2000s (Giesy and Kannan, 2001; Prevedouros et al., 2006), used in many industrial and 71 

consumer applications, and identified among the most ubiquitous PFAS in various environ-72 

mental matrices and humans (Hansen et al., 2001). These PFAS have been detected in remote 73 

locations, such as the Arctic and Antarctic, as they can be transported through the atmosphere 74 

and by oceanic currents over long-distances (AMAP, 2017; Armitage et al., 2009; Butt et al., 75 

2010; Nash et al., 2010; Yamashita et al., 2008). 76 
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PFAS production sites are major point sources of groundwater contamination in the 77 

United States and in other countries. For example, high levels of PFAS have been documented 78 

in the Cape Fear River in North Carolina due to wastewater discharges from a former fluoro-79 

chemical production plant (EPA, 2006; Nakayama et al., 2007; Sun et al., 2016). PFOS and 80 

other associated compounds can still be detected in biota and humans as a consequence of 81 

releases from 3M’s PFAS production plants in Minnesota, despite being phased out almost two 82 

decades ago (Oliaei et al., 2013). In addition, PFAS-containing AFFFs used at commercial 83 

airports and military bases have been identified as the major sources of PFAS contamination 84 

of drinking water in the United States and other developed countries (Andrews and Naidenko, 85 

2020; Banzhaf et al., 2017; Sunderland et al., 2019).  86 

The Centers for Disease Control and Prevention has reported detectable serum PFAS levels 87 

in 97% of the U.S. population (CDC, 2019). Consumption of contaminated food and drinking 88 

water is a significant PFAS exposure pathway (Begley et al., 2005; Sunderland et al., 2019; 89 

Yuan et al., 2016). Drinking contaminated water in Uppsala, Sweden, has led to a significant 90 

increase in serum levels of perfluorohexanesulfonic acid (PFHxS). Concentrations in serum 91 

decreased by 20% in the next few years when the contaminated water source was substituted 92 

with uncontaminated sources (Stubleski et al., 2016). Hu et al. (2016) have shown that there 93 

was a significant link between PFAS detection in drinking water and the proximity of industrial 94 

sites, military fire training facilities, commercial airports, and wastewater treatment plants to 95 

contaminated water sources. In fact, in populations living near sites contaminated by point 96 

sources, drinking water can contribute up to 75% to total PFAS exposure (Hoffman et al., 2011; 97 

Vestergren and Cousins, 2009; Wang et al., 2017).  98 

Epidemiological and toxicological studies suggest that PFAS exposure is associated with 99 

hepatic, cardiovascular, endocrine, immune, reproductive, and developmental adverse effects 100 

in animal models and humans (ATSDR, 2021; Fenton et al., 2021).  Growing concerns about 101 
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PFAS persistence and toxicity have led to the listing of PFOS and PFOA for global elimination 102 

under legally binding provisions of the Stockholm Convention on Persistent Organic Pollutants 103 

(POPs) in 2009 and 2019, respectively. The expert committee of the Stockholm Convention, 104 

the POPs Review Committee, has also recommended the global elimination of PFHxS with no 105 

exemptions (UNEP, 2019b). Canada nominated long-chain perfluorocarboxylic acids (PFCAs) 106 

in 2021 for inclusion under provisions of the Convention (Canada.ca, 2021) and in January 107 

2022, the Committee decided that long-chain PFCAs met the criteria for inclusion (UNEP, 108 

2022). The global fluoro-manufacturer, 3M, phased out PFOS, PFOA, and related compounds 109 

in 2000 to 2002 (3M, 1999, 2000b). In the United States, the Environmental Protection Agency 110 

(U.S. EPA) initiated a PFOA Stewardship Program, under which eight major fluoropolymer 111 

producers phased out  PFOA and its precursors (EPA, 2021c).  112 

Gustavus, a small community in southeast Alaska, serves as a gateway to the Glacier Bay 113 

National Park and Preserve and has a year-round population of 442 people (NPS, 2021). The 114 

majority of people in Gustavus obtain their drinking water from private wells that are generally 115 

15-25 feet deep (McDowell, 2021). The Alaska Department of Environmental Conservation 116 

(DEC) and Department of Transportation & Public Facilities (DOT & PF) have prioritized 117 

Gustavus for PFAS investigation due to the known historical use of AFFFs at the Gustavus 118 

Airport and its potential impacts on drinking water (ACAT, 2019). DOT & PF began testing 119 

water for PFAS in Gustavus in August 2018 and initial tests showed that 19 Gustavus wells 120 

had PFAS concentrations above state action levels of 70 ng/L (the sum of PFOS and PFOA) 121 

(McDowell, 2021). As a result of further investigation, water samples from 101 wells, includ-122 

ing the Airport Terminal well and the Firehouse well, were collected and analyzed for five 123 

PFAS (ACAT, 2019). For about 20% of the analyzed wells, PFAS concentrations were very 124 

close to or exceeded the limit of 70 ng/L recommended by the U.S. EPA for PFAS in drinking 125 
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water (EPA, 2016a). The highest reported concentration of 6,729 ng/L exceeded the U.S. EPA 126 

critical level by almost two orders of magnitude (ACAT, 2019). 127 

Here, we have analyzed drinking water samples collected from private homes (and public 128 

places) in Gustavus and blood serum samples from their residents for a range of PFAS. The 129 

goals of this pilot study were threefold: (1) to understand the overall occurrence of an expanded 130 

suite of 39 PFAS in drinking water and serum of Gustavus residents; (2) to estimate total daily 131 

intake through consumption of drinking water; and (3) to explore correlations between PFAS 132 

levels in water and serum of residents who provided water samples. 133 

2. Materials and Methods 134 

Water Collection. Twenty-seven well water samples were collected from residences and 135 

public spaces in Gustavus, Alaska, during November 2019. Water samples were collected in 136 

polypropylene bottles precleaned with water, isopropyl alcohol, and methanol. The water was 137 

purged for 15 minutes prior to sample collection. Polypropylene bottles were rinsed twice with 138 

sample water, filled, sealed, and shipped to the laboratory on dry ice where they were stored at 139 

-20 oC until analysis. 140 

Serum Collection. Forty serum samples were collected from those Gustavus residents, 141 

who provided water from their residences. Participants were recruited via flyers posted in the 142 

Gustavus community. Serum samples were drawn by health care providers in the local com-143 

munity clinic. Serum samples were collected into 10 mL BD Vacutainer serum tubes by veni-144 

puncture, allowed to clot by leaving undisturbed at room temperature for 30 minutes, and then 145 

centrifuged at 2000 rpm for ten minutes to separate serum. The samples were shipped to the 146 

laboratory at Indiana University and were stored at -20 oC until analysis.  147 

Information on demographics and drinking water sources was collected from all partic-148 

ipants (Table 1). This study was approved by the Indiana University Institutional Review Board 149 
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and each participant signed an informed consent (assent in case of children) before participa-150 

tion.   151 

Water Analysis. Water samples (250 mL, thawed at room temperature) were transferred 152 

into a new polypropylene bottle, precleaned with water, isopropyl alcohol, and methanol. The 153 

samples were fortified with surrogate standards (i.e., mass recovery standards; Table S4) and 154 

adjusted to pH = 4 with adding 25 µL of acetic acid. Oasis weak anion-exchange (WAX) car-155 

tridges (6 mL, 150 mg, 30 µm) were pre-conditioned with 3 mL of methanol with 0.5% am-156 

monium acetate, 3 mL of methanol, and 3 mL of water with 2% formic acid. The samples were 157 

filtered using 0.45 μm glass fiber filters and loaded into 60 mL reservoirs connected to WAX 158 

cartridges. The cartridges were allowed to dry completely under vacuum for 10 minutes. Sam-159 

ples were then eluted using 6 mL of 0.5% methanolic ammonium hydroxide. The extracts were 160 

concentrated to 200 μL under a gentle stream of N2. Samples were then filtered through 0.2 μm 161 

nylon syringe filters (3000 rpm, 5 min) and the final extracts were spiked with isotopically 162 

labelled internal standards for instrumental quantitation (Table S1). 163 

Serum Analysis. Human serum samples (1 mL, thawed at room temperature) were forti-164 

fied with surrogate standards and ultrasonicated in 4 mL of acetonitrile for 30 minutes. The 165 

samples were then centrifuged (3000 rpm, 5 minutes) and the supernatant was transferred into 166 

a new tube. These extraction steps were repeated twice, and all the supernatants were com-167 

bined. The resulting extract was concentrated to ~1 mL using a gentle stream of N2 and diluted 168 

with 4 mL of water. WAX cartridges were preconditioned (3 mL, 60 mg, 30 µm) by passing 3 169 

mL of methanol with 0.5% ammonium acetate, 3 mL of methanol, and 3 mL of water with 2% 170 

formic acid. Samples were then loaded onto the cartridges, and the cartridges were allowed to 171 

dry completely under vacuum for 10 minutes. After washing with 3 mL of water and 2% formic 172 

acid, the target compounds were eluted from the cartridge with 3 mL of 0.5% methanolic am-173 

monium hydroxide. Eluted samples were concentrated using N2 and solvent exchanged to 0.5 174 
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mL of methanol. The samples were then passed through 0.2 μm nylon filters and the final 175 

samples were spiked with isotopically labeled internal standards for instrumental quantitation. 176 

The details on standards and reagents used in this study are provided in the Supporting Infor-177 

mation. 178 

Instrumental Analysis. PFAS were analyzed using an ultra-performance liquid chromato-179 

graph coupled with a triple-quadrupole mass spectrometer (Agilent 1290 Infinity II UPLC – 180 

6470 QQQ-MS) in the negative electrospray ionization (ESI-) mode. Chromatographic sepa-181 

ration was performed on an Acquity UPLC BEH C18 column (50 mm, 2.1 mm i.d., 1.7 μm 182 

thickness, Waters, Milford, MA) at 40 °C. Mobile phases consisted of 2 mM ammonium ace-183 

tate in water (A) and 2 mM ammonium acetate in methanol (B). The gradient was 10% B for 184 

0.5 min initially, ramped to 40% B for 1 min, and then increased to 100% B for 17.5 min. The 185 

chromatograph was equilibrated for 3.5 min after every run and the sample injection volume 186 

was 5 μL. The nebulizer, gas flow, gas temperature, capillary voltage, sheath gas temperature, 187 

and sheath gas flow were set to be 25 psi, 10 L/min, 300 °C, 2800 V, 330 °C, and 11 L/min, 188 

respectively. Data acquisition was operated under dynamic multiple reaction monitoring mode. 189 

Optimized transition ions are listed in Table S1.  190 

Quality Assurance and Control. Procedural blanks and matrix spike samples were in-191 

cluded in each batch of water and serum samples. Average blank levels were low and consti-192 

tuted only 6% and 7% of average PFAS levels in water and serum samples, respectively. All 193 

data were blank corrected by subtracting average blank concentrations from sample concentra-194 

tions. Method detection limits (MDLs) were set as three times the standard deviation of the 195 

target analyte levels detected in blanks. For compounds not detected in blanks, MDLs were 196 

based on a signal-to-noise ratio of three. MDLs and average blank concentrations for all ana-197 

lytes are included in Table S2. The absolute matrix spike recoveries ranged from 50 to 144% 198 
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for target analytes in water and from 30 to 123% for target analytes in serum (Table S3). Sur-199 

rogate standards were spiked to each sample, and their recoveries ranged from 77 ± 4 to 153 ± 200 

8% (mean ± standard error) in water and from 50 ± 3 to 100 ± 2% in serum samples (Table 201 

S4). 202 

Quantification of target compounds was performed by isotope dilution using eight-point 203 

calibration curves with concentration ranges of 0.1 – 100 ng/mL. The regression coefficients 204 

of linearity tests were all > 0.99.  205 

Data Analysis. Estimated daily intake (EDI) rates for PFAS via drinking water were cal-206 

culated as shown in Equation 1: 207 

 208 

EDIDW =  CDW × DIDW    (1)      210 

 209 

where EDIDW (ng/kg body weight [bw] /day) is the estimated daily intake via consumption of 211 

drinking water, the CDW (ng/L) is the concentration of a chemical in drinking water, DIDW (L/kg 212 

bw /day) is the daily average water volume intake per kg of body weight. Values used for DIDW 213 

were as follows: 0.011 L/kg bw /day for ages of 9 – 18 years old; 0.012 L/kg bw /day for ages 214 

of 19 – 59 years old; and 0.014 L/kg bw /day for ages over 59 years old based on the EPA 215 

Exposure Factors Handbook (EPA, 2011).   216 

Plots were generated using Sigma Plot 13 (Systat Software Inc.). Statistical analysis, in-217 

cluding Shapiro–Wilk, Mann-Whitney Rank Sum, and Spearman Rank Order Correlation 218 

tests, were performed using Sigma Plot 13. Descriptive statistics were computed using Mi-219 

crosoft Excel 2021 (Version 16.56). Concentrations below MDLs were replaced with MDL/2 220 

values for the descriptive statistics and correlation analyses. The significance level was set at 221 

p < 0.05. 222 
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3. Results and Discussion 223 

Population Characteristics. A summary of demographic characteristics of the partici-224 

pants is presented in Table 1. Participants ranged in age from 8 to 97 years old (mean 45 ± 4 225 

years) with 78% adults and 22% children. Sixty percent of the participants were female. Sev-226 

enty three percent of the participants lived in Gustavus for ≥ 10 years. Forty five percent of 227 

the participants indicated that they use some type of water filters, 23% stated that they do not 228 

use any water filter, while 32% of participants did not provide a response.  229 

PFAS Concentrations in Well Water. The detection frequencies and median, mean (and 230 

their standard errors), minimum, and maximum concentrations for PFAS detected in water 231 

samples are provided in Table 2. Twelve PFAS were detected in Gustavus private well water 232 

samples and 7 of them were detected in ≥ 40% of the samples. The rest of the PFAS analytes 233 

were not detected in any of the samples and are not included in the further discussion.  234 

Total PFAS concentrations in residential water samples (ΣPFAS, the sum of 12 de-235 

tected PFAS concentrations) ranged from not detected (n.d.) to 120 ng/L. Perfluoropropane 236 

sulfonic acid (PFPrS), perfluoro-1-butanesulfonic acid (PFBS), perfluoropentanesulfonic acid 237 

(PFPeS), and PFOA were frequently detected (48-80% of the samples) but measured at rela-238 

tively low concentrations and only contributed ≤ 3% to the ΣPFAS concentrations. PFOS, 239 

PFHxS, and perfluorohexanoic acid (PFHxA) were less frequently detected although at 240 

higher concentrations. PFOS, PFHxS, and PFHxA were among the top contributors and con-241 

stituted 55%, 16%, and 12% of the ΣPFAS concentrations, respectively. The remaining com-242 

pounds were either detected less frequently or were less abundant.  243 

PFAS Concentrations in Public Water. Two water samples had elevated PFAS con-244 

centrations of 14,600 and 228 ng/L (Table 2). These samples were collected from the Depart-245 

ment of Transportation (DOT) and the Alaska Seaplanes terminal at the airport in Gustavus, 246 

Alaska, respectively. Overall, PFOS was the predominant compound (6,300 ng/L) in the DOT 247 
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sample, followed by PFHxA (3,240 ng/L), perfluoropentanoic acid (PFPeA, 2,940 ng/L), and 248 

PFHxS (671 ng/L). The same PFAS compounds (PFOS at 146 ng/L, PFHxS at 28.9 ng/L, 249 

PFHxS at 17.4 ng/L, and PFPeA at 14.3 ng/L) were detected in the sample from the Gustavus 250 

airport (Table 2). PFOS and PFHxS were used as additives in legacy first generation AFFFs 251 

(D'Agostino and Mabury, 2014; Lin et al., 2021), and may also form from precursors from 252 

other foam components (Buck et al., 2011; Houtz et al., 2013; Rotander et al., 2015). Detection 253 

of elevated PFAS levels in water samples from these public facilities can be explained by the 254 

historical use of AFFFs, which resulted in nearby groundwater contamination (ACAT, 2019; 255 

McDowell, 2021; Rotander et al., 2015).  256 

Our study confirms PFAS levels and congener patterns reported from previous investi-257 

gations (DOT&PF, 2021; S&W, 2019). DOT & PF evaluated the potential for human exposure 258 

to PFAS contamination in Gustavus water supply wells during 2019 (S&W, 2020). Water sam-259 

ples were collected from private wells (unidentified) as well as the Gustavus airport and the 260 

results are generally consistent with our analysis. For example, the results from one sample 261 

collected at the airport in March 2019 revealed concentrations comparable to those found for 262 

airport sample in this study: PFOS at 270 ng/L, PFHxS at 30 ng/L, and PFBS at 4.3 ng/L 263 

(DOT&PF, 2021; S&W, 2019). However, in contract with our study, PFHxA and PFOA were 264 

not detected in this sample, and PFPeA was not analyzed.  265 

Comparison of Drinking Water Concentrations.  The PFAS concentrations detected 266 

in residential drinking water samples in this pilot study were similar to those measured across 267 

5,000 public waterworks in the U.S. from 2013 to 2015 (25 to 180 ng/L) (Guelfo and Adamson, 268 

2018). The levels of PFAS detected in public drinking water samples collected near the source 269 

zone (n = 2) were comparable to source zone levels reported in similar studies (McDonough et 270 

al., 2021; Pitter et al., 2020; Xu et al., 2021). Xu et al. (2021) assessed PFAS levels in contam-271 

inated drinking water in Sweden due to nearby fire training zones. Concentrations of PFOS 272 
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ranged from n.d. to 8,000 ng/L in background and source zone waterworks, respectively (Xu 273 

et al., 2021). Similarly, Pitter et al. (2020) reported a maximum PFOS concentration of 1,480 274 

ng/L in private wells impacted by a PFAS manufacturing plant.  275 

PFAS at levels above the U.S. EPA lifetime health advisory have been correlated with 276 

fire training areas, industrial manufacturing, and wastewater treatment plants (Andrews and 277 

Naidenko, 2020). Overall, our findings show that, while PFAS concentrations in most of Gus-278 

tavus residential wells are within the EPA’s non-regulatory lifetime health advisory of 70 ng/L, 279 

~12% of the water samples exceed this level. Protective measures should be taken to prevent 280 

additional risks associated with elevated PFAS exposures (EPA, 2021d). Several states have 281 

established more stringent and enforceable drinking water standards based on scientific con-282 

clusions that the U.S. EPA health advisory levels are insufficiently protective (Hu et al., 2016; 283 

Post, 2021). 284 

Estimated Daily Intake (EDI) from Drinking Water. The PFAS EDIs for residents 285 

through the intake of drinking water are presented in Table 3. The EDIs increased with age 286 

because of the increased water consumption per body weight. The highest PFAS EDI was 287 

found for residents between the ages of 60 – 97 years (0.310 ng/kg bw/day), followed by 19 – 288 

59 years old (0.266 ng/kg bw/day), and 8 – 18 years old (0.244 ng/kg bw/day). The EDIs from 289 

this pilot study were lower than the U.S. EPA Reference Dose for PFOS (20 ng/kg bw/day) 290 

and the Agency for Toxic Substances and Disease Registry's (ATSDR) intermediate oral Min-291 

imal Risk Level (MRL) for PFOS (2 ng/kg bw/day) (ATSDR, 2021; EPA, 2016b; Post, 2021).  292 

However, the EDI values for drinking water determined here were more comparable to the 293 

European Food Safety Authority's (EFSA) Tolerable Daily Intake for sum of PFOA, PFNA, 294 

PFHxS, and PFOS (0.63 ng/kg bw/day) (EFSA, 2020). The U.S. EPA recently released draft 295 

health-based levels for PFAS in drinking water which are significantly more stringent than 296 

current standards (EPA, 2021b). 297 
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PFAS Concentrations in Serum. Table 2 includes the results of the descriptive statistics 298 

for the 17 PFAS detected in Gustavus serum samples. Of these 17, a total of 14 PFAS were 299 

detected in at least 40% of the samples. ΣPFAS concentrations (the sum of 17 detected PFAS 300 

concentrations) ranged from 0.017– 13.1 ng/mL (median 0.0823 ng/mL). Overall, PFOS was 301 

the most abundant PFAS detected in all the samples with a median of 3.38 ng/mL and contrib-302 

uted ~40% to ΣPFAS concentrations, similarly to the water samples. PFHxS and PFOA were 303 

also abundant and detected in 95 and 100% of the samples at median concentrations of 1.17 304 

and 0.975 ng/mL, respectively. These two compounds contributed 26% and 12% to ΣPFAS 305 

concentrations, respectively. Strong positive Spearman correlation between PFOS and PFHxS 306 

serum concentrations (n = 40; r = 0.646; p < 0.0001) suggests that these compounds have a 307 

common exposure source.   308 

Rotander et al. (2015) also reported PFOS and PFHxS as the most abundant PFAS 309 

measured in serum samples collected from firefighters with past AFFF exposure in Australia. 310 

Similar results were reported demonstrating PFOS and PFHxS as the most abundant targeted 311 

PFAS detected in serum samples of participants exposed to AFFF-contaminated drinking water 312 

(Barton et al., 2020; McDonough et al., 2021; Xu et al., 2021). Xu et al. (2021) found elevated 313 

PFAS serum levels in residents of Ronneby, Sweden, with long-term exposure to AFFF-con-314 

taminated drinking water. Xu et al. (2021) reported population geometric means for PFOS, 315 

PFOA, and PFHxS in serum were 135, 6.8, and 114 ng/mL, respectively. A neighboring city 316 

with uncontaminated drinking water served as a reference group and the population geometric 317 

means for PFOS, PFOA, and PFHxS in serum were 3.9, 1.5, and 0.84 ng/mL, respectively (Xu 318 

et al., 2021). The concentrations found in these two locations were higher than those found in 319 

our study. In addition, serum PFAS data collected in the U.S. National Health and Nutrition 320 

Examination Survey (NHANES) between 2015 and 2016 was compared to Gustavus results 321 
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(https://wwwn.cdc.gov/nchs/nhanes/ accessed on December 21, 2021). The median serum lev-322 

els of PFOS, PFOA, and PFHxS in NHANES (n = 1993) were 4.80, 1.57, and 1.20 ng/mL, 323 

respectively (CDC, 2019) and were generally comparable to the levels found in Gustavus res-324 

idents (CDC, 2019; Graber et al., 2021; Moon, 2021).  325 

PFAS Patterns in Serum and Water. Figure 1 compares the individual contributions of 326 

11 PFAS compounds to the ΣPFAS concentrations measured in ≥ 20% of both water and serum 327 

samples. Similarities in the PFAS profiles between the public and residential water and serum 328 

suggest a common source: PFOS and PFHxS were the two most abundant PFAS found in all 329 

three sample groups. PFHxA had comparable contributions to the PFAS concentrations in 330 

well water (12%) and source water (22% for DOT and 13% for Airport). In contrast, PFPeA 331 

(C5) contributed 20% and 6% to the PFAS concentrations in the DOT and Airport samples, 332 

respectively, but only 2% to the residential well water. The contributions of PFOS were similar 333 

in water and serum samples; however, serum samples showed greater contributions of PFHxS 334 

and PFOA. Serum had lower contributions from the short-chain PFAS, which is likely due to 335 

their shorter half-lives in human body (Jian et al., 2018; Zhang et al., 2013). Xu et al. (2020) 336 

found similar results in serum and drinking water samples from participants exposed to AFFF-337 

contaminated water in Sweden. Spearman’s correlation analysis shows a significant positive 338 

correlation (r = 0.495; p = 0.0192) between the sum of the three most abundant PFAS com-339 

pounds in paired water and serum samples (PFOS, PFOA, and PFHxS). These results suggest 340 

that drinking water is an important contributor to the PFAS body burden in Gustavus residents. 341 

To further investigate the effect of the drinking water source on the PFAS body burden, 342 

serum samples were divided into two groups based on the source of drinking water indicated 343 

in the survey. The first group included those drinking from private wells and the second group 344 

included residents with alternate drinking sources, including bottled water, which started in 345 

2018 when the source was initially identified. While there were no statistical differences among 346 
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these groups based on the Mann-Whitney results (p = 0.659), the median level for the group 347 

drinking well water was higher than residents with alternate drinking water sources (7.89 348 

ng/mL vs 5.46 ng/mL) (Figure 2). The lack of statistical difference may also be explained by 349 

the slow decline of PFAS levels in residents who have historically used well water but have 350 

switched to alternate water sources due to water contamination.   351 

4. Conclusions 352 

Overall, this pilot study found extremely elevated levels of several PFAS in water sam-353 

ples collected near the airport in Gustavus, Alaska, and confirms this location as a significant 354 

source of PFAS. In total, up to seventeen PFAS were detected in paired residential water and 355 

serum samples collected from the Gustavus households. PFOS, PFOA, PFHxS, and PFHxA 356 

were the most abundant compounds in these samples and comprised up to ~80% of the ΣPFAS 357 

concentrations. A similarity of the PFAS distribution profile between the samples collected by 358 

the source and residential water suggests that contamination in private wells sampled in this 359 

study has likely originated from the airport. In addition, a significant correlation between the 360 

levels of select PFAS in paired drinking water and serum samples suggests drinking water as 361 

an important source contributing to body burden of PFAS in Gustavus residents. We cannot 362 

assess whether Gustavus residents’ exposure to PFAS has or will result in adverse health ef-363 

fects, however it is critical to take precautionary measures to prevent further exposures. In 364 

addition, it is also important to conduct regular water and serum testing, and to make medical 365 

screening available to affected individuals. Medical monitoring can discern any early signs of 366 

disease that might be associated with PFAS exposure, lead to earlier protective interventions, 367 

and reduce the effects of exposure.   368 
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Table 1. Summary of Participants’ Demographic Characteristics.  369 

 370 

 371 

parameters  N percentage, % 

age (years) <33 12 30 

 >33 28 70 

gender Male 17 40 

 Female 23 60 

residence time (years) <10 9 23 

 ≥10 31 73 

  missing 1 4 

Water source filtered 18 45 

 unfiltered 9 23 

 missing 13 32 

 372 

 373 

Table 2. Detection frequency (DF, %), minimum (min), median, mean (with their standard 374 

errors, SE), and maximum (max) concentrations of PFAS in water (ng/L) and serum (ng/mL) 375 

samples and the contribution of each individual PFAS compound to ΣPFAS concentrations. 376 

MDL: method detection limit.  377 
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         Source Zone Water  

(ng/L, n = 2) 
    

 
 

 

 
 Residential water (ng/L, n = 25)  DOT  Airport Serum (ng/mL, n = 40)  

 

  
compound (car-

bon chain)  
DF  min. median mean +/- SE max. contr. concentration concentration DF  min. median mean ± SE max. contr.   

 
 Short-Chain Short-Chain 

 
PFPrS (C3) 48 <MDL <MDL 0.223 ± 0.0667 1.19 1 22.5 2.08 0 <MDL <MDL <MDL <MDL 0 

 

 PFBA (C4) 0 <MDL <MDL <MDL <MDL 0 597 7.27 0 <MDL <MDL <MDL <MDL 0 
 

 PFBS (C4) 80 <MDL 0.394 0.767 ± 0.174 3.16 3 91.8 4.2 90 <MDL 0.167 0.0557 ± 0.0074 0.192 1 
 

 PFPeA (C5) 20 <MDL <MDL 0.674 ± 0.339 6.50 2 2,940 14.3 83 <MDL 0.0353 0.317 ± 0.0447 1.40 3 
 

 PFPeS (C5) 52 <MDL 0.059 0.743 ± 0.234 4.18 3 117 3.05 88 <MDL 0.238 0.0555 ± 0.0138 0.502 1 
 

 PFHxA (C6) 20 <MDL <MDL 9.84 ± 1.09 28.4 12 3,240 28.9 15 <MDL <MDL 0.00984 ± 0.00109 0.0325 0 
 

 PFHxS (C6) 40 <MDL <MDL 4.38 ± 1.52 28.6 16 671 17.4 95 <MDL 1.17 2.46 ± 0.433 13.1 26  

 4:2 FTS (C6) 0 <MDL <MDL <MDL <MDL 0 4.63 <MDL 5 <MDL <MDL <MDL 0.0393 3  

 PFHpA (C7) 24 <MDL <MDL 0.949 ± 0.293 6.38 4 332 <MDL 93 <MDL 0.0267 0.0472 ± 0.00907 0.258 0 
 

 PFHpS (C7) 40 <MDL <MDL 0.294 ± 0.102 1.76 1 98 1.56 100 0.018 0.150 0.256 ± 0.0366 1.07 3 
 

 PFOS (C8) 40 <MDL <MDL 14.9 ± 5.87 120 55 6,300 146 100 0.278 3.38 3.78 ± 0.348 9.04 40 
 

 PFOA (C8) 48 <MDL <MDL 0.636 ± 0.203 3.17 2 89.4 <MDL 95 <MDL 0.975 1.11 ± 0.107 3.69 12 
 

 PFECHS (C8) 20 <MDL <MDL 0.0326 ± 0.0154 0.358 0 0.372 <MDL 43 <MDL <MDL 0.0105 ± 0.00159 0.0452 0 
 

 FOSA (C8) 0 <MDL <MDL <MDL <MDL 0 <MDL <MDL 58 <MDL 0.0163 0.0244 ± 0.00479 0.159 0 
 

 
PFNA (C9) 8 <MDL <MDL 

0.0189 ± 

0.00964 
0.188 0 21.1 <MDL 100 0.026 0.521 0.553 ± 0.0446 1.32 6 

 

 PFDA (C10) 0 <MDL <MDL <MDL <MDL 0 <MDL <MDL 100 0.017 0.240 0.258 ± 0.0201 0.548 3 
 

 PFUdA (C11) 0 <MDL <MDL <MDL <MDL 0 <MDL <MDL 90 <MDL 0.143 0.185 ± 0.0189 0.472 2 
 

 PFDoA (C12) 0 <MDL <MDL <MDL <MDL 0 <MDL <MDL 58 <MDL 0.034 0.0362 ± 0.00346 0.0824 0 
 

 PFTrDA (C13) 0 <MDL <MDL <MDL <MDL 0 <MDL <MDL 28 <MDL <MDL 0.0290 ± 0.00260 0.0876 0 
 

  ∑PFAS   <MDL <MDL 2.16 ± 1.08 120 100 14,600 228   0.017 0.0823 0.520 ± 0.204 13.1 100   

 378 
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Table 3. Estimated daily intakes (EDIs, ng/ kg body weight [bw]/day) for PFAS through con-379 

sumption of drinking water (ng/kg bw/day). Only individual PFAS with detection frequency 380 

≥40% were included in the EDI calculation.  381 

 382 

  age, years 

  8 – 18  19 – 59 60 – 97 

PFPrS 0.002 0.003 0.003 

PFBS 0.008 0.009 0.011 

PFPeS 0.008 0.009 0.010 

PFHxS 0.048 0.053 0.061 

PFHpS 0.003 0.003 0.004 

PFOA 0.007 0.008 0.009 

PFOS 0.164 0.179 0.209 

ΣPFAS 0.244 0.266 0.310 

 383 

 384 

Figure 1. Contributions (%) of individual PFAS to the PFAS concentrations in residential 385 

and public water (DOT and Airport) and serum samples collected from Gustavus, Alaska. 386 

Only compounds with detection frequency of ≥ 20% in both water and sera were included.  387 

 388 

 389 
  390 
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Figure 2. Total PFAS concentrations in human sera separated into two groups based on 391 

drinking water source: private well water and bottled water. The boxes represent the means 392 

with their standard errors, and the whiskers represent the 25th and 75th percentiles. The line 393 

inside each box represents the median.  394 

 395 

 396 
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Highlights 

• The presence of a significant PFAS source near Gustavus, Alaska, was confirmed. 

• PFOS and PFHxS were most abundant in Gustavus resident serum and well water.  

• PFAS concentrations in serum and well water were positively associated. 
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