31-LS0878\M Fisher 3/6/20

CS FOR SENATE BILL NO. 194(CRA)

IN THE LEGISLATURE OF THE STATE OF ALASKA

THIRTY-FIRST LEGISLATURE - SECOND SESSION

BY THE SENATE COMMUNITY AND REGIONAL AFFAIRS COMMITTEE

Offered: Referred:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Sponsor(s): SENATE COMMUNITY AND REGIONAL AFFAIRS COMMITTEE

A BILL

FOR AN ACT ENTITLED

"An Act relating to advanced nuclear reactors."

BE IT ENACTED BY THE LEGISLATURE OF THE STATE OF ALASKA:

* Section 1. AS 18.45.025(a) is amended to read:

(a) A person may not construct a nuclear fuel production facility, nuclear utilization facility, utilization facility, reprocessing facility, [OR] nuclear waste disposal facility, or advanced nuclear reactor in the state without first obtaining a permit from the Department of Environmental Conservation to construct the facility on land designated by the legislature under (b) of this section.

* Sec. 2. AS 18.45.025 is amended by adding a new subsection to read:

(d) Notwithstanding (a) or (b) of this section, the Department of Environmental Conservation may issue a permit to a person to construct an advanced nuclear reactor that has a power output of less than 300 megawatts on land not designated by the legislature under (b) of this section.

* Sec. 3. AS 18.45.900 is amended by adding a new paragraph to read:

(9) "advanced nuclear reactor" means

	WORK DRAFT	WORK DRAFT 31-LS0878\M
1		(A) a nuclear fission reactor with significant improvements
2	C C	compared to fission reactors in operation before January 1, 2020, such as
3		(i) additional inherent safety features;
4		(ii) lower waste yields;
5		(iii) improved fuel performance;
6		(iv) increased tolerance to loss of fuel cooling;
7		(v) enhanced reliability;
8		(vi) increased proliferation resistance;
9		(vii) increased thermal efficiency;
10		(viii) reduced consumption of cooling water;
11		(ix) the ability to integrate into electric applications and
12		nonelectric applications;
13		(x) modular sizes to allow for deployment that
14		corresponds with the demand for electricity;
15		(xi) operational flexibility to respond to changes in
16		demand for electricity and to complement integration with intermittent
17		renewable energy;
18		(B) a prototype nuclear fission reactor with significant
19	i	improvements compared to fission reactors in operation before January 1,
20	2	2020, such as those listed in (A) of this paragraph; or
21		(C) a fusion reactor.