Institute of the North Center for Alaska's Arctic Policy

Presentation by Nils Andreassen Executive Director

|Who we are|

Vision: Effective land and resource governance resulting in individual and collective prosperity.

Mission: To inform public policy and cultivate an engaged citizenry.

Strategic Focus: Understanding and conveying the opportunities and obligations of the Arctic.

|Responding to|

Fundamental challenges facing Alaska and Alaska's Arctic:

- Declining oil production
- Infrastructure deficit
- Significant change taking place
- State and national environment of fiscal constraint
- Increasing international and national attention; local and regional areas of concern

Fundamental Lessons for Alaska, from Iceland and Norway

Iceland - Sacrifice in the short-term for long-term prosperity

- 1. Pick a resource
- 2. Develop comprehensive plan
- 3. Own the infrastructure
- 4. Export value-added product

Norway - Respond to complexity with sophistication

- 1. Export non-renewable resource, develop renewables for domestic use
- 2. Co-invest in production and infrastructure, sharing risk and reward
- 3. Build regulatory capacity for effective and efficient development of resources

Iceland and Alaska by the Numbers

		Iceland	Alaska	
	Population (2011)	320,000	722,000	
	Area (square miles)	39,768	664,988	
	GDP (USD, 2011)	\$14 Billion	\$45 Billion	
	GDP/Capita (2011)	\$38,0000	\$65,143	
	Power Consumption/ (Petajoules in 2010)	234.0	.676	
	Installed Electricity Generating Capacity in 2011 (MW)	2,579.0	2,067.0 (1,400 in Railbelt)	
	Democratic Government/Currency	Sovereign, Unicameral Parliament; 5 parties; President; Not EU/IS Kroner	Non-Sovereign State; Bi- Cameral; 2 parties; Governor/US Dollar	
Electricity	Hydroelectric	73.8%	21%	
	Geothermal Electricity	26.2%	-	
	Natural Gas Electricity Generation	-	56%	
	Oil	-	14%	
	Coal	-	9%	
Home Heating				
	Natural Gas	-	46%	
	Fuel Oil	-	36%	
	Electricity	10%	10%	
	Geothermal	90%	-	

Iceland Energy Mix

- 80% of primary energy supply comes from renewable resources (hydro, geothermal)
 - 99.9% of electricity production
 - 99% of space heating
- Remaining 20% comes from imported fossil fuels, used mainly in transportation and fisheries

Electricity Profile (2010)

Installed Capacity

Electricity Production

	MW	%		MW	%
Hydro	1,883	73.0	Hydro	12,592	72.9
Geothermal	575	22.3	Geothermal	4,465	27.0
Fuel	121	4.7	Fuel	2	0.0
Total	2579	100.0	Total	17,059	100.0

Electricity Consumption

Aluminum Industry Public Service Ferrosilicon Industry Residential Consumption Utilities Other Industries Aluminum Foils Factory Agriculture Fishing

73%

Kárahnjúkar Hydropower Plant 4,6000 GWh annually 690 MW installed capacity Fjardaál Aluminum Smelter 940 tons of aluminum a day ~1% of world aluminum production

Iceland Exports (2011)

Total ca \$8.5 billion

Positive Trade Balance, 14%

Iceland Energy Planning

- Comprehensive Energy Strategy for Iceland
 - Having renewable energy sources replace imported energy
 - Support diversified industry
 - Precautionary and protective approach in energy production
- Master Plan for Utilization of Renewable Energy Resources
 - 80 different possibilities for hydropower and geothermal power plants have been listed and analyzed
 - Sustainability issues, preservation of natural environments and historic sites, tourism and alternative land use, regional development and economy
 - Sites put in three categories:
 - Green Proceed with utilization process (apply for licenses etc.) 8.5 TWh
 - Yellow Site subject to further research 12.5 TWh
 - Red Site shall be preserved and not utilized for energy purposes 11.3 TWh

Who should own the grid?

- Circumferential electric transmission grid serves almost all communities
- Government of Iceland as a guarantor, not financier
- "Power" of the grid—meet community needs and anything is possible
- Institutional innovation: access to transmission system creates a framework so competition can occur

Lessons for Alaska

• Fiscal prudence

- Big projects (both public and private) are only pursued with financing/buyer is in place
- Spend less than you earn
- Long-term decision-making on infrastructure investment
 - Icelanders have been willing to sacrifice in the short term for future prosperity
 - No subsidies but state-supported infrastructure

• Strategic planning

- Identify areas that the region can lead on and be intentional to make steady careful progress in developing essential expertise
- Economic development strategy: diversification of national economic portfolio with cluster development
- Master Plan for Energy Development: weighing all options before deciding which to energize, need more information, to conserve

Snapshot of Norway (2010):

- Population: 4,888,000 (7x that of Alaska)
- Income Per Capita: \$88,400 (vs. \$43,209 AK)
- Income: GDP/PPP: \$59,100 (vs. \$47,700 U.S.)
- Unemployment Rate: 3%
- % of Government annual expenditure paid by oil and gas revenues: 10 - 26% (vs. 80-90% AK)
- Democratically elected Parliament.

Norway's Licensing System:

- Norway selects tracts to license (6 year initial term) after consultation with stakeholders
- Norway conducts initial seismic (2D); results are made public
- Industry submits applications consisting of a work plan, financial strength, safety record (no bonus bid, no royalty)
- Licenses are awarded based upon work plan and qualifications; 6 years = "Drill or Drop"

Norway's Licensing System (cont.)

- Environmental and other approvals are included in license
- License may include several partners and specifies state (Petoro) share as part of terms
- Going forward, all partners are part of decision process, share investment, expenses and information

What is SDFI

- State invests and participates directly (the same as a producer) in the development of the resource
- State substitutes ...

... definitive work and investment commitments, for upfront lease bonus,

... **participation in development decisions** and access to information, for passive royalty role

• State becomes an active participant rather than a passive, back seat driver

Most significant lesson learned

- SDFI creates alignment of interests between the State and producers
 - State gains understanding of investment dynamics
 - State has full access to data and better understands field dynamics and development
 - State participates directly and has the ability to help drive development decisions
 - Increases State understanding, reduces State suspicion
- Norway once used bonus and royalty system, but transitioned away from it because they concluded it impaired investment decisions

Implementing SDFI in Alaska

- Can be added as an option in new leases
- But, that does not reach "low hanging fruit"

 Challenge is to make SDFI available as an option to help immediately in developing existing resources
- Important part of Norwegian model: create a professional, non-politicized corporation (similar to Permanent Fund Board) to administer state's interest

RECAP: Private Companies Like: Norway's Investment Incentives:

- Reduced Risk (2D seismic provided by Norway)
- Reduced Up-Front Costs (no \$ bids)
- Shared Risk/CO-INVESTMENT (SDFI)
- Alignment between Norway and industry
- **Predictability:** Quick permitting, consistent environmental and safety rules, limited judicial interference. License to Production in 3 years.
- Tax Stability: 78%; non-progressive. Rapid deductibility of development costs

Takeaways

- Norwegian Petroleum Directorate intersection of public and private sector with public interest
- Oil and gas for export; renewables for domestic energy consumption
- Government take maximized through stateowned enterprise, co-investment arm, state investment in infrastructure
- Stability plus returns results in private sector confidence

House Energy Developed - Roadmap

- Criteria A principle or standard by which something may be judged or decided
- Strategy prioritize or rank how we spend limited money in a way that produces results
- System tracks projects/expenditures to make sure that we are accomplishing the goals set out by the policy

Potential Recommendations

- Make standing committees of House Energy and Senate In-State Energy – consolidate oversight
- Evaluate energy projects with accurate information, and options vetted and weighed against one another
 - Instead of projects or technology, focus on infrastructure
- Encourage better outreach and communication from state agencies – benchmarks of success
- Encourage and support private investment
- Implement energy policy as a key element of fiscal policy fenceposts for policy makers and agencies

Themes from 2013 Arctic Energy Summit

Richness Responsibility Resilience

Cross-Sectoral Approach

Not risk free, but commitment to risk mitigation

Necessary response ability

Community, culture, and environment – Development of indicators

Ability to respond and adapt to change – system capacity to bounce back

Asset dependent, plus scale and rate of change

Time sensitive – implement responsibility now

Resilient communities depend on resilient energy systems

Potential Research/Projects

- 1. Impact of grid connectivity to social and economic development
- 2. Inventory of measures of government support to both extractive industry and renewable energy projects
- 3. Study examining the benefit sharing arrangements to local communities from private sector development
- 4. Lessons learned from policies promoting renewable energy
- 5. Dedicated financial vehicle (i.e.; Arctic Development Bank or Arctic Resilience Fund) to support renewable energy, local development, and resilience
- 6. Develop best practices guide to northern energy efficiency, through engineering, architecture and design

2015 Arctic Energy Summit

Energy Contributing to a Lasting Future Security and Affordability

September 28-30,2015 in Fairbanks, AK – coinciding with the Arctic Council's SDWG meeting

Thank you!

Nils Andreassen Institute of the North

Phone: (907) 786-6324 or cell: (907) 351-4982 Email: nandreassen@institutenorth.org

Website: www.institutenorth.org Twitter: @ionorth Facebook: www.facebook.com/InstituteNorth

GREENLAND
FINLAND
NORWAY
SWEDEN
DENMARK