Neurobiology of Dyslexia 2/23/18, 9:49 AM

HHS Public Access
s/(. :\llfl"l()l‘ m.‘]ﬂl.’ﬁ«'l‘!["f

Peer-reviewed and accepted for publication

About author manuscripts Submit a manuscript
Curr Opin Neurobiol. Author manuscript; available in PMC 2016 Feb 1. PMCID: PMC4293303
Published in final edited form as: NIHMSID: NIHMS631274

Curr Opin Neurobiol. 2015 Feb; 0: 73-78.
Published online 2014 Oct 4. doi: 10.1016/j.conb.2014.09.007

Neurobiology of Dyslexia

Elizabeth S. Norton,' Sara D. Beach,” and John D. E. Gabrieli'2

1M(:Govern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St.,
Cambridge, MA 02139

2Ins‘citute for Medical Engineering & Science, Cambridge, MA 02139

Corresponding Author: Elizabeth S. Norton, 43 ,esn@mit.edu Vassar St., MIT Building 46-4037, Cambridge, MA 02139

Copyright notice and Disclaimer

Publisher's Disclaimer

The publisher's final edited version of this article is available at Curr Opin Neurobiol
See other articles in PMC that cite the published article.

Abstract Go to:

Dyslexia is one of the most common learning disabilities, yet its brain basis and core causes are not yet fully
understood. Neuroimaging methods, including structural and functional magnetic resonance imaging,
diffusion tensor imaging, and electrophysiology, have significantly contributed to knowledge about the
neurobiology of dyslexia. Recent studies have discovered brain differences prior to formal instruction that
likely encourage or discourage learning to read effectively, distinguished between brain differences that likely
reflect the etiology of dyslexia versus brain differences that are the consequences of variation in reading
experience, and identified distinct neural networks associated with specific psychological factors that are
associated with dyslexia.

1. Introduction Go to:

Developmental dyslexia, an unexplained difficulty in word reading accuracy and/or fluency, affects 5—12% of
children [1,2]. Dyslexia is associated with many undesirable outcomes, including reduced educational
attainment and academic self-esteem [3]. Furthermore, children with dyslexia tend to read far less outside of
school than their peers [4], resulting in a widening gap in reading skills. Over the past 15 years, neuroimaging
has made visible and quantifiable the brain differences that are associated with dyslexia; here, we review
progress in the past few years in understanding the biological basis of dyslexia at a neural systems level.

Reading is a complex and slowly learned skill requiring the integration of multiple visual, linguistic,
cognitive, and attentional processes. Neuroimaging methods including functional magnetic resonance
imaging (fMRI), electroencephalography (EEG, and event-related potentials or ERPs), and
magnetoencephalography (MEG), have revealed the brain regions most consistently involved in single word
reading. In typically reading adults, these regions are lateralized to the language-dominant left hemisphere,
and include inferior frontal, superior and middle temporal, and temporo-parietal regions [5]. In addition,
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experienced readers recruit an area of the left fusiform gyrus, termed the visual word form area (VWFA),

which becomes preferentially engaged for orthographic (print) processing with reading experience [6—8]. This

reading network (Figure 1) develops over years as children gain both specific reading skills and other abilities
relevant to reading (e.g., 9). White-matter pathways that connect the components of the reading network can
be quantified in size and strength by diffusion tensor imaging (DTI). Major tracts involved in reading include
the left arcuate/superior longitudinal fasciculus, which connects frontal and temporal language regions, the

inferior longitudinal fasciculus, which connects occipital and temporal lobes, and the corona radiata, which

connects cortex to subcortical structures [10].

Figure 1

includes the visual word form area, ...

2. Psychological Bases of Dyslexia

Schematic of the aspects of the reading brain in the left hemisphere. The
inferior frontal gyrus (yellow) and the inferior parietal area (blue) are
connected by the arcuate fasciculus (green). The fusiform gyrus, which

Go to:

Because reading involves multiple linguistic, visual, and attentional processes, it is likely that variable

patterns of weakness may contribute to reading difficulty across children. Although it is unlikely that there is

a single causal mechanism of dyslexia, some frequent likely causes have been identified (Table 1). The best
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Table 1

Key Constructs in Reading and Potential Deficits in Dyslexia

Construct

Definition

Example Tasks

Phonological
Awareness
(PA)

Knowledge of, and ability to manipulate,
the sound structure of words

- Say game without the /g/

- What word do these sounds
make? /s/ - /if - It/

- Name a word that thymes with

star

Rapid
Automatized
Naming
(RAN)

Speed with which a series of familiar
stimuli can be named aloud, reflecting
efficient visual-verbal connections

Name, as quickly as possible, a
10%5 array of 5 randomly repeated

objects, colors, letters, or numbers

Reading

Fhianm:

Ability to read single words and connected

tavt unth cuffinriant anmiram: and enaad e

- Read aloud a list of common

wrarde Aar neandauvrarde ac anial-he

Meta-analyses of primary research findings have identified broad patterns of functional and structural

differences between typical and dyslexic readers. The most common functional brain differences, in children
and adults, are reduced activations (hypoactivations) in left temporal, parietal, and fusiform (VWFA) regions

[19-22]. In most cases, these hypoactivations arise from comparisons between two tasks or conditions, and

thus reflect a lack of differential sensitivity to reading demands rather than a broader dysfunction of those
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brain regions. Increased activations in dyslexia are sometimes, but not consistently, observed in left inferior
frontal and right-hemisphere regions. Variability across these findings may reflect differences in reading
tasks, ages of participants, diversity among dyslexic groups, and other factors. Additionally, structural gray
matter differences in dyslexia tend to co-localize with regions that show functional differences [23], but are
also observed in the cerebellum, particularly in lobule VI [24, 25]. DTI studies often find reduced
organization or volume in the left superior longitudinal fasciculus, including the arcuate fasciculus, and
corona radiata fibers [26].

Because most neuroimaging studies of dyslexia have been conducted with children or adults who have had
years of reading difficulty, it has been impossible to determine whether the brain differences are associated
with the underlying neurobiological etiology of dyslexia, or are instead the consequence of years of altered
and often vastly reduced reading experience (including compensatory alterations in reading networks). One
approach to dissociating the cause and consequence of dyslexia in the brain has been to compare dyslexic
children not only to age-matched typically reading children, but also to “ability-matched” children who are
years younger than the dyslexic children but read at the same level. Ability-matched children are
conceptualized as having approximately the same amount of reading experience as older dyslexic children. In
one such study, dyslexic children exhibited reduced left parietal and occipito-temporal activations relative to
both age- and ability-matched children, suggesting that these hypoactivations were related to the cause of
dyslexia (in contrast, left prefrontal activations tracked ability level) [27].

A similar design challenged another idea about dyslexia, the magnocellular hypothesis of dyslexia.
Previously, postmortem evidence from individuals with dyslexia revealed smaller magnocellular neurons in
the lateral geniculate body [28], part of the visual pathway that is associated with motion perception.
Accordingly, reduced activation for moving gratings in area MT, the cortical region most associated with
motion perception, was found in adults with dyslexia [29]. When, however, children with dyslexia were
examined, their MT activations were equivalent to ability-matched younger children, suggesting that the MT
hypoactivation in dyslexia reflected reading experience [30]. This conclusion was further supported by
evidence that remediation of the reading difficulty also enhanced MT activations in children with dyslexia
[30]. These findings suggest that reduced MT activation for visual motion in dyslexia is a consequence, not a
cause, of dyslexia. Similarly, many structural brain differences in dyslexia among age-matched groups were
eliminated when a group with dyslexia was compared to ability-matched children [31].

Another strategy for identifying brain differences that underlie dyslexia has been the study of pre-reading
children, typically in kindergarten, for whom brain differences cannot be the consequence of altered reading
experience. Although pre-reading children cannot have a formal diagnosis of dyslexia, children can be
identified as at-risk for dyslexia because of either a family history of dyslexia, which increases their risk of
dyslexia by four times or more [32], or low performance on tests of pre-reading skills that tend to predict
future reading difficulty (e.g., PA or RAN). Often, these children are followed longitudinally to determine
which at-risk children actually progress to dyslexia.

Several neuroimaging studies have found brain differences preceding formal reading instruction in pre-
reading children that resemble those observed in older children and adults. ERP studies of the mismatch
negativity (MMN), an automatic response to an oddball auditory stimulus that is reduced in adults with
dyslexia, have observed differences between infants with versus without a family history of dyslexia [33], and
infants who do or do not develop dyslexia [34, 35]. Thus, the MMN may be a promising early endophenotype
of dyslexia [36].

In MRI, pre-reading kindergartners with familial risk for dyslexia exhibited reduced bilateral
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occipitotemporal and left temporo-parietal activations for PA [37] and also bilaterally reduced grey matter
volumes in similar posterior cortical regions [38]. Decreased grey-matter volumes in prefrontal and parieto-
temporal regions were also found in 5- and 6-year-olds with maternal histories of reading difficulty [39]. In a
heterogeneous sample of kindergartners, pre-reading children exhibited a positive correlation between
measures of PA and both the size and microstructural white-matter organization of the left arcuate fasciculus
[40]. Although it is not yet known which of these children will develop dyslexia, these studies support the
idea that the most commonly observed functional and structural brain differences characterizing dyslexia are
present before significant reading experience and therefore are more likely causes rather than consequences
of dyslexia.

5. Advances in Understanding the Brain Basis of Aspects of Dyslexia Go to:

Brain Basis of Phonological Awareness (PA) Deficits

Impaired PA in dyslexia could reflect either a deficit in representing phonetic sounds and/or a deficit in access
to and manipulation of those sounds (e.g., for mapping phonemes to print). Previously, a review of behavioral
studies of dyslexia concluded that phonetic representations are intact, but access to those representations may
be impaired [41]. Recently, a neuroimaging study with adults found that phonetic representations, as
measured by multivoxel pattern analysis of activations in bilateral auditory cortices, were intact in dyslexia,
but that functional and structural (DTI) connectivity between auditory cortices and left inferior frontal gyrus
was reduced [42]. These findings favor the interpretation of dyslexia as being characterized by weakness in
access to otherwise intact phonetic representations. Consistent with this conclusion is the finding that children
with dyslexia exhibited reduced prefrontal activation when engaging in an auditory PA task, but no difference
in temporal-lobe activation, as compared with both age- and ability-matched children [43].

Brain Basis of Rapid Automatized Naming (RAN) Deficits

RAN has been partially dissociated from PA as a skill essential for learning to read [12, 13], but now there is
evidence for a neurobiological distinction between the two skills. A large structural MRI study of typical
adult readers of Chinese found that phonological decoding ability was related to gray matter volume in left
perisylvian cortex, whereas naming speed was related to volume in a more distributed network across all four
lobes [44]. Further, functional activation to a PA task differed among groups of children with PA and RAN
deficits, as predicted by the double deficit hypothesis. Activation in left inferior parietal lobule showed a
gradient associated with PA ability, whereas activation in right cerebellar lobule VI showed a gradient with
RAN ability [45].

Brain Basis of Reading Fluency Deficits

For older children with dyslexia who must read longer texts, slow reading is a major problem. Both the
psychological and brain bases of reduced fluency for connected text, such as sentences and paragraphs, have
been poorly understood relative to the many studies focusing on single-word reading. Two studies, however,
examined reading fluency directly in dyslexia during fMRI by presenting sentences word-by-word at varying
rates and testing comprehension, but the two studies reported disparate results [46, 47]. Both studies reported
that more rapid reading resulted in greater activation of left fusiform cortex in the VWFA region. One study
reported that children with dyslexia exhibited reduced activation related to fluency exclusively in left
fusiform gyrus despite no significant differences in comprehension accuracy [46]. The other study reported
that adults with dyslexia exhibited disproportionately worse comprehension accuracy and lesser activation in
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left prefrontal and superior temporal regions as a function of reading speed, but found no group difference in
the VWFA region [47]. Although the populations and outcomes of the two studies differed, they have initiated
the analysis of the brain basis of impaired reading fluency in dyslexia.

Brain Basis of Basic Perceptual Processes

Neuroimaging findings have reported neural correlates of atypical basic perceptual processes in dyslexia.
Successful parsing of the speech signal depends on the ability of left auditory cortex to selectively amplify
phonemic information in the 30 Hz (low gamma) range [48]. MEG revealed reduced entrainment, or
synchronization of neural firing, to the 30 Hz frequency range in dyslexia, as well as reduced left-hemisphere
specialization for such oscillations [49, 50]. These differences may impede the efficient transfer of acoustic
information into more abstract phonemic representations. Individuals with dyslexia also exhibited reduced
neural entrainment in response to linguistic stimuli [51, 52], differences in EEG signals that reflect integration
of auditory and visual stimuli [53], and greater variability of auditory brainstem responses to speech sounds
[54].

An advantage of understanding dyslexia in terms of basic perceptual processes is that the neural mechanisms
of those processes can be studied in animals. Animal research has linked dyslexia-associated genes such as
KIAA0319 with atypical neural migration [55] and impaired speech sound discrimination [55, 56], suggesting
that the mechanism by which cortical abnormalities result in behavioral deficits is through the disruption of
synchronous firing in response to oral language [57]. In humans, variation in KIAA0319 and two other
dyslexia susceptibility genes has been associated with variation in left-hemisphere white matter and reading
skill [58]. Such research may integrate findings from the genetic, cellular, cognitive, and behavioral levels in
understanding the core deficits in dyslexia.

6. Conclusion Go to:

Progress in understanding the cognitive neuroscience of dyslexia may be approaching translation from basic
research to intervention for children who will struggle to read. Remediation is known to be most effective in
beginning readers, so early and accurate identification may promote effective intervention for children before
they experience prolonged reading failure. Neuroimaging has identified biomarkers that enhance or
outperform current behavioral measures in predicting long-term reading outcomes [59—63]. With further
progress in understanding specific components of dyslexia (e.g., PA, RAN, fluency) it may also become
possible to develop personalized interventions that target the specific patterns of weaknesses that undermine
learning to read in individual children.

Highlights

e Neuroimaging is identifying brain differences related to causes of dyslexia.
e Brain bases of specific aspects of dyslexia have been better identified.
e Genetics may bridge study of neural mechanisms to dyslexia in humans.
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